943 resultados para Obesity. Cardiopulmonary exercise test. uptake oxygen. incremental test
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
The objective was to analyze the oxygen uptake (VO2) kinetics during exercise performed at critical power (CP) in subjects with different aerobic status in cycling. Six trained cyclists (GT) and seven non-trained subjects (GNT) underwent to the following protocols in cyclergometer: (a) incremental to exhaustion to determine VO2max and its respective workload (IVO(2)max); b) three square-wave tests to exhaustion at 95-110% IVO2max to determine CP, and; (c) one square-wave test to exhaustion at 100% CP. During the exercise at CP the slow component expressed as absolute value (GT: 342.4 +/- 165.8 ml.min(-1) vs. GNT: 571.3 +/- 170.1 ml.min(-1)) and as the relative contribution to the increase of VO2 during exercise (GT: 10.0 +/- 4.6% vs. GNT: 26.6 +/- 7.3%) were lower for trained subjects. The VO2 at the end of the exercise at PC (GT: 89.8 +/- 8.4% VO(2)max vs. GNT: 97.4 +/- 2.8% VO(2)max) was significantly lower in GT (rho = 0.045), and similar to VO(2)max in GNT. Therefore, the aerobic level might influence the VO2 responses to exercise at PC
Resumo:
The main objective of this study was to analyze the reliability of blood lactate concentration ([La]), oxygen uptake (VO2) and heart rate (FC) in an intermittent protoco, performed at 95%VO2max with passive or active recovery in untrained subjects. Participated of this study, active healthy males with 20 to 25 years, which were doing aerobic exercises witha weekly frequency of 3 sessions at least. The individulas performed, in different days, the following protocols in a cyclergometer: 1) An incremental test until exhaustion to determine maximal oxygen uptake (VO2max) and the intensity at VO2max; b) Two transitions at 95%VO2max for the determination of the VO2 kinetics parameters and; c) Two intermittent tests until exhaustion, with repetitions at 95% IVO2max and with durantion defined as being half of the duration of the slow component. The duration of the recovery was half of the duration of the effort (effort:pause of 2:1). This test was performed with passive (GP) and active recovery (GA). The VO2 and FC were measured continulously in both tests. Blood collections were performed for the determination of the [La]. There was significant correlação in both groups for VO2 (ATIVA - 0.94, PASSIVA - 0.75), [La] (ATIVA - 0.83, PASSIVA - 0.90) and FC (0.93) only for the passive group. Thus, it can be concluded that the cardiorrespiratory and metabolic responses present good realiability in an intermittent exercise with active or passive recovery
Resumo:
To date little is known about the reliability of peak oxygen consumption (VO2pEAK) in incremental metronome paced step tests (1ST) and the reliability of on-kinetics VO2 has never been studied. We aimed to study the reliability of both tests. Eleven healthy subjects performed two ISTs until exhaustion. On two different days two duplicate 4 min constant metronome paced step tests (CST) were performed. VO2PEAK, mean response time (MRT) and phase II time constant (tau) were tested for reproducibility using the paired t-tests, in addition to the limits of agreement (LOA) and within subject coefficient of variation (COV). With a 95% LOA of 0.38 to 0.26 L min(-1), -8.7 to 9.1 s and -9.9 to 10.5 s they exhibit a COV of 3%, 4.5% and 6.9% for VO2PEAK, MRT and tau respectively. ST are sufficiently reliable for maximal and submaximal aerobic power assessments in healthy subjects and new studies of oxygen uptake kinetics in selected patient groups are warranted. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the use of the running anaerobic sprint test (RAST) as a predictor of anaerobic capacity, compare it to the maximal accumulated oxygen deficit (MAOD) and to compare the RAST's parameters with the parameters of 30-s all-out tethered running on a treadmill. 39 (17.0±1.4 years) soccer players participated in this study. The participants underwent an incremental test, 10 submaximal efforts [50-95% of velocity correspondent to VO2MAX (vVO2MAX)] and one supramaximal effort at 110% of vVO2MAX for the determination of MAOD. Furthermore, the athletes performed the RAST. In the second stage the 30-s all-out tethered running was performed on a treadmill (30-s all-out), and compared with RAST. No significant correlation was observed between MAOD and RAST parameters. However, significant correlations were found between the power of the fifth effort (P5) of RAST with peak and mean power of 30-s all-out (r=0.73 and 0.50; p<0.05, respectively). In conclusion, the parameters from RAST do not have an association with MAOD, suggesting that this method should not be used to evaluate anaerobic capacity. Although the correlations between RAST parameters with 30-s all-out do reinforce the RAST as an evaluation method of anaerobic metabolism, such as anaerobic power.
Resumo:
Bertuzzi, R, Bueno, S, Pasqua, LA, Acquesta, FM, Batista, MB, Roschel, H, Kiss, MAPDM, Serrao, JC, Tricoli, V, and Ugrinowitsch, C. Bioenergetics and neuromuscular determinants of the time to exhaustion at velocity corresponding to (V) over dotO(2)max in recreational long-distance runners. J Strength Cond Res 26(8): 2096-2102, 2012-The purpose of this study was to investigate the main bioenergetics and neuromuscular determinants of the time to exhaustion (T-lim) at the velocity corresponding to maximal oxygen uptake in recreational long-distance runners. Twenty runners performed the following tests on 5 different days: (a) maximal incremental treadmill test, (b) 2 submaximal tests to determine running economy and vertical stiffness, (c) exhaustive test to measured the T-lim, (d) maximum dynamic strength test, and (e) muscle power production test. Aerobic and anaerobic energy contributions during the T-lim test were also estimated. The stepwise multiple regression method selected 3 independent variables to explain T-lim variance. Total energy production explained 84.1% of the shared variance (p = 0.001), whereas peak oxygen uptake ((V) over dotO(2)peak) measured during T-lim and lower limb muscle power ability accounted for the additional 10% of the shared variance (p = 0.014). These data suggest that the total energy production, (V) over dotO(2)peak, and lower limb muscle power ability are the main physiological and neuromuscular determinants of T-lim in recreational long-distance runners.
Resumo:
Bertuzzi, R, Franchini, E, Tricoli, V, Lima-Silva, AE, Pires, FDO, Okuno, NM, and Kiss, MAPDM. Fit-climbing test: A field test for indoor rock climbing. J Strength Cond Res 26(6): 1558-1563, 2012-The aim of this study was to develop an indoor rock-climbing test on an artificial wall (Fit-climbing test). Thirteen climbers (elite group [EG] = 6; recreational group [RG] = 7) performed the following tests: (a) familiarization in the Fitclimbing test, (b) the Fit-climbing test, and (c) a retest to evaluate the Fit-climbing test's reliability. Gas exchange, blood lactate concentration, handgrip strength, and heart rate were measured during the test. Oxygen uptake during the Fit-climbing test was not different between groups (EG = 8.4 +/- 1.1 L; RG = 7.9 +/- 1.5 L, p > 0.05). The EG performance (120 +/- 7 movements) was statistically higher than the RG climbers' performance (78 +/- 13 movements) during the Fit-climbing test. Consequently, the oxygen cost per movement during the Fit-climbing test of the EG was significantly lower than that of the RG (p < 0.05). Handgrip strength was higher in the EG when compared with that in the RG in both pre-Fit- and post-Fit-climbing test (p < 0.05). There were no significant differences in any other variables analyzed during the Fit-climbing test (p > 0.05). Furthermore, the performance in the Fit-climbing test presented high reliability (intraclass correlation coefficient = 0.97). Therefore, the performance during the Fit-climbing test may be an alternative to evaluate rock climbers because of its specificity and relation to oxygen cost per movement during climbing.
Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists
Resumo:
[EN] The aim of this study was to evaluate the effects of severe acute hypoxia on exercise performance and metabolism during 30-s Wingate tests. Five endurance- (E) and five sprint- (S) trained track cyclists from the Spanish National Team performed 30-s Wingate tests in normoxia and hypoxia (inspired O(2) fraction = 0.10). Oxygen deficit was estimated from submaximal cycling economy tests by use of a nonlinear model. E cyclists showed higher maximal O(2) uptake than S (72 +/- 1 and 62 +/- 2 ml x kg(-1) x min(-1), P < 0.05). S cyclists achieved higher peak and mean power output, and 33% larger oxygen deficit than E (P < 0.05). During the Wingate test in normoxia, S relied more on anaerobic energy sources than E (P < 0.05); however, S showed a larger fatigue index in both conditions (P < 0.05). Compared with normoxia, hypoxia lowered O(2) uptake by 16% in E and S (P < 0.05). Peak power output, fatigue index, and exercise femoral vein blood lactate concentration were not altered by hypoxia in any group. Endurance cyclists, unlike S, maintained their mean power output in hypoxia by increasing their anaerobic energy production, as shown by 7% greater oxygen deficit and 11% higher postexercise lactate concentration. In conclusion, performance during 30-s Wingate tests in severe acute hypoxia is maintained or barely reduced owing to the enhancement of the anaerobic energy release. The effect of severe acute hypoxia on supramaximal exercise performance depends on training background.
Resumo:
[EN] To unravel the mechanisms by which maximal oxygen uptake (VO2 max) is reduced with severe acute hypoxia in humans, nine Danish lowlanders performed incremental cycle ergometer exercise to exhaustion, while breathing room air (normoxia) or 10.5% O2 in N2 (hypoxia, approximately 5,300 m above sea level). With hypoxia, exercise PaO2 dropped to 31-34 mmHg and arterial O2 content (CaO2) was reduced by 35% (P < 0.001). Forty-one percent of the reduction in CaO2 was explained by the lower inspired O2 pressure (PiO2) in hypoxia, whereas the rest was due to the impairment of the pulmonary gas exchange, as reflected by the higher alveolar-arterial O2 difference in hypoxia (P < 0.05). Hypoxia caused a 47% decrease in VO2 max (a greater fall than accountable by reduced CaO2). Peak cardiac output decreased by 17% (P < 0.01), due to equal reductions in both peak heart rate and stroke VOlume (P < 0.05). Peak leg blood flow was also lower (by 22%, P < 0.01). Consequently, systemic and leg O2 delivery were reduced by 43 and 47%, respectively, with hypoxia (P < 0.001) correlating closely with VO2 max (r = 0.98, P < 0.001). Therefore, three main mechanisms account for the reduction of VO2 max in severe acute hypoxia: 1) reduction of PiO2, 2) impairment of pulmonary gas exchange, and 3) reduction of maximal cardiac output and peak leg blood flow, each explaining about one-third of the loss in VO2 max.
Resumo:
Speeding the VO2 kinetics results in a reduction of the O2 deficit. Two factors might determine VO2 kinetics: oxygen delivery to muscle (Tschakovsky and Hughson 1999) and a muscle 'metabolic inertia' (Grassi et al. 1996). Therefore, in study 1 we investigated VO2 kinetics and cardiovascular system adaptations during step exercise transitions in different regions of the moderate domain. In study 2 we investigated muscle oxygenation and cardio-pulmonary adaptations during step exercise tests before, after and over a period of training. Study 1 methods: Seven subjects (26 ± 8 yr; 176 ± 5 cm; 69 ± 6 kg) performed 4 types of step transition from rest (0-50W; 0-100W) or elevate baseline (25-75W; 25-125W). GET and VO2max were assessed before testing. O2 uptake and were measured during testing. Study 2 methods: 10 subjects (25 ± 4 yr; 175 ± 9 cm; 71 ± 12 kg) performed a step transition test (0 to 100 W) before, after and during 4 weeks of endurance training (ET). VO2max and GET were assessed before and after of ET (40 minutes, 3 times a week, 60% O2max). VO2 uptake, Q and deoxyheamoglobin were measured during testing. Study 1 results: VO2 τ and the functional gain were slower in the upper regions of the moderate domain. Q increased more abruptly during rest to work condition. Q τ was faster than VO2 τ for each exercise step. Study 2 results: VO2 τ became faster after ET (25%) and particularly after 1 training session (4%). Q kinetics changed after 4 training sessions nevertheless it was always faster than VO2 τ. An attenuation in ∆[HHb] /∆VO2 was detectible. Conclusion: these investigations suggest that muscle fibres recruitment exerts a influence on the VO2 response within the moderate domain either during different forms of step transition or following ET.