918 resultados para ORGANIC MATERIAL
Resumo:
Alternating copolymer of 7,9-di(thiophen-2-yl)-8H-cyclopenta[a]acenaphthylen-8-one-co-benzothia diazole was synthesized by palladium(0) catalyzed Stille coupling reaction. This solution processable copolymer shows an excellent thermal stability and has a broad absorption range from 300 to 800 nm with a band gap of about 1.51 eV. High LUMO energy level and low band gap of the synthesized copolymers suggest that, this copolymer will be a suitable donor material for use in an organic photovoltaic device. Photovoltaic devices were fabricated from the blend of copolymer and phenyl-C61-butyric acid methyl ester as the active material. (C) 2011 Elsevier By. All rights reserved.
Resumo:
LiNi0.8Co0.2O2 cathode material for lithium ion batteries is synthesized by reaction under autogenic pressure at elevated temperature (RAPET) method. The simple synthesis procedure is time and energy saving, and thus is promising for commercial application. The structure and stability of the material have been characterized by means of XRD and TG-DTA. The electrochemical properties of the LiNi0.8Co0.2O2 cathode are investigated in 2 M Li2SO4 aqueous electrolyte and they are compared to that in an organic electrolyte. A battery cell consisting of LiNi0.8Co0.2O2 as cathode in 2 M Li2SO4 solution is constructed in combination with LiTi2 (PO4)(3) as anode. The cell retained almost constant discharge capacity over hundred cycles. The electrochemical impedance spectral ( EIS) studies in aqueous and nonaqueous electrolytes revealed that the mechanism of lithium ion intercalation and deintercalation processes in LiNi0.8Co0.2O2 electrode follow almost similar mechanism in both aqueous and nonaqueous electrolytes. The chemical diffusion coefficient was calculated from slow scan rate cyclic voltammetry and EIS. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.075205jes] All rights reserved.
Resumo:
Electrodes and the nature of their contact with organic materials play a crucial role in the realization of efficient optoelectronic components. Whether the injection (organic light-emitting diodes - OLEDs) or collection (organic photovoltaic cells - OPV cells) of carriers, contacts must be as efficient as possible. To do this, it is customary to refer to electrode surface treatment and/or using a buffer layer all things to optimize the contact. Efficiency of organic photovoltaic cells based on organic electron donor/organic electron acceptor junctions can be strongly improved when the transparent conductive anode is coated with a buffer layer (ABL). We show that an ultra-thin gold (0.5 nm) or a thin molybdenum oxide (3-5 nm) can be used as efficient ABL. However, the effects of these ABL depend on the highest occupied molecular orbital (HOMO) of different electron donors of the OPV cells. The results indicate that, in the case of metal ABL, a good matching between the work function of the anode and the highest occupied molecular orbital of the donor material is the major factor limiting the hole transfer efficiency. Indeed, gold is efficient as ABL only when the HOMO of the organic donor is close to its work function Phi(Au). MoO3 has a wider field of application as ABL than gold. The role of the oxide is not so clearly understood than that of Au, different models proposed to interpret the experimental results are discussed.
Resumo:
Nanoindentation and scratch experiments on 1:1 donor-acceptor complexes, 1 and 2, of 1,2,4,5-tetracyanobenzene with pyrene and phenanthrene, respectively, reveal long-range molecular layer gliding and large interaction anisotropy. Due to the layered arrangements in these crystals, these experiments that apply stress in particular directions result in the breaking of interlayer interactions, thus allowing molecular sheets to glide over one another with ease. Complex 1 has a layered crystal packing wherein the layers are 68° skew under the (002) face and the interlayer space is stabilized by van der Waals interactions. Upon indenting this surface with a Berkovich tip, pile-up of material was observed on just one side of the indenter due to the close angular alignment of the layers with the half angle of the indenter tip (65.35°). The interfacial differences in the elastic modulus (21 ) and hardness (16 ) demonstrate the anisotropic nature of crystal packing. In 2, the molecular stacks are arranged in a staggered manner; there is no layer arrangement, and the interlayer stabilization involves C-H�N hydrogen bonds and ��� interactions. This results in a higher modulus (20 ) for (020) as compared to (001), although the anisotropy in hardness is minimal (4 ). The anisotropy within a face was analyzed using AFM image scans and the coefficient of friction of four orthogonal nanoscratches on the cleavage planes of 1 and 2. A higher friction coefficient was obtained for 2 as compared to 1 even in the cleavage direction due to the presence of hydrogen bonds in the interlayer region making the tip movement more hindered. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
An alternating copolymer containing dithienylcyclopentadienone, thiophene and benzothiadiazole was synthesized by palladium (0) catalyzed Stille coupling reaction. Structural characterization of the synthesized alternating copolymer was carried out by NMR and FTIR spectroscopy. This solution processable copolymer shows an excellent thermal stability and has a broad absorption range from 300-800 nm. High LUMO energy level and low band gap of the synthesized copolymers suggest that, this copolymer will be a better donor material for application in organic photovoltaics. Particle size analysis and molecular weight determination of the synthesized copolymer through dynamic light scattering experiment indicates that, high molecular weight copolymer was obtained by this polymerization route. Photovoltaic devices were fabricated from the blend of copolymer and phenyl-C61- butyric acid methyl ester as the active material. Fabricated photovoltaic device results show that this alternating copolymer is a promising candidate for use in organic photovoltaics.
Resumo:
A novel thiophene derivative 7,9-di(thiophen-2-yl)-8H-cyclopentaa]acenaphthylen-8-one (DTCPA) is shown to exhibit high electrical conductivity (1.97 x 10(-2) +/- 0.0018 S/cm at RT) in the crystalline state. The material shows two orders of increase in conductivity from normal solid to single crystalline state. The crystal structure has S center dot center dot center dot S chalcogen bonding, C-H center dot center dot center dot O hydrogen bonding, and pi center dot center dot center dot pi stacking as the major intermolecular interactions. The nature and strength of the S center dot center dot center dot S interactions in this structure have been evaluated by theoretical charge density analysis, and its contribution to the crystal packing quantified by Hirshfeld surface analysis. Further, thermal and morphological characterizations have been carried out, and the second harmonic generation (SHG) efficiency has been measured using the Kurtz-Perry method.
Pressure-Induced Bond Rearrangement and Reversible Phase Transformation in a Metal-Organic Framework
Resumo:
Pressure-induced phase transformations (PIPTs) occur in a wide range of materials. In general, the bonding characteristics, before and after the PIPT, remain invariant in most materials, and the bond rearrangement is usually irreversible due to the strain induced under pressure. A reversible PIPT associated with a substantial bond rearrangement has been found in a metal-organic framework material, namely tmenH(2)]Er(HCOO)(4)](2) (tmenH(2)(2+) = N,N,N',N'-tetramethylethylenediammonium). The transition is first-order and is accompanied by a unit cell volume change of about 10%. High-pressure single-crystal X-ray diffraction studies reveal the complex bond rearrangement through the transition. The reversible nature of the transition is confirmed by means of independent nanoindentation measurements on single crystals.
Resumo:
With the progress of modern material science and successful commercialisations of organic-electronics, the field of organic luminescent materials has gained much attention in recent years. For a long time, the concepts and knowledge of photoluminescence (i.e. fluorescence and phosphorescence) were restricted to the solution phase as the exceptions of fluorescence quenching in condensed state were yet to be discovered. However, in the last few decades, researchers around the globe have come up with a number of promising strategies and concepts to systematically design solid-state emissive organic materials. In particular, the manipulations of ordered solid state structures and intermolecular strong and weak interactions provide a basis for understanding structure-property relationship and serve as an important tool for the design of newer, better and more efficient luminescent materials. In this short review, recent developments in this field will be presented.
Resumo:
Two-component super-hydrogelation triggered by the acid-base interaction of a L-histidine appended pyrenyl derivative (PyHis) and phthalic acid (PA) was reported. The use of isomeric isophthalic or terephthalic acid or other comparable acids in place of PA does not lead to salt formation and therefore hydrogelation is not observed. Excimer formation of the pyrenyl unit has not been detected although the PyHis : PA = 1: 1 system undergoes extensive self-assembly in aqueous solution. The synergistic effect of intermolecular H-bonding forces, pi-pi stacking, electrostatic interactions, etc. is found to be responsible for robust hydrogel formation. Development of chiral supramotecular assemblies has been verified through circular dichroism spectroscopy. Morphological investigations involving the PyHis : PA = 1: 1 system show vesicular nano-structures with a definite bilayer width at relatively low concentrations. The latter fuses to construct coiled-coil left-handed helical fibers upon increase in the concentrations of the gelators. The intertwining of the resultant helical fibers eventually results in hydrogel formation. The probable bilayer packing in the self-assembled structures has been probed using X-ray diffraction (XRD) studies and lanthanide sensitization, which suggests that the polar imidazolium hydrogen phthalate unit of the gelator forms the head group and faces the hydrophilic water environment while the hydrophobic pyrenyl units sit inside the hydrophobic core of the bilayer. The hydrogel exhibits multi-stimuli responsiveness including thixotropic behavior. In addition, shape-persistent as well as rapid self-healing behaviour of the hydrogel was established. Furthermore load-bearing characteristics of the hydrogel have also been demonstrated.
Resumo:
In this study, thin films of cobalt oxide (Co3O4) have been grown by the metal-organic chemical vapor deposition (MOCVD) technique on stainless steel substrate at two preferred temperatures (450 degrees C and 500 degrees C), using cobalt acetylacetonate dihydrate as precursor. Spherical as well as columnar microstructures of Co3O4 have been observed under controlled growth conditions. Further investigations reveal these films are phase-pure, well crystallized and carbon-free. High-resolution TEM analysis confirms that each columnar structure is a continuous stack of minute crystals. Comparative study between these Co3O4 films grown at 450 degrees C and 500 degrees C has been carried out for their application as negative electrodes in Li-ion batteries. Our method of electrode fabrication leads to a coating of active material directly on current collector without any use of external additives. A high specific capacity of 1168 micro Ah cm(-2) mu m(-1) has been measured reproducibly for the film deposited at 500 degrees C with columnar morphology. Further, high rate capability is observed when cycled at different current densities. The Co3O4 electrode with columnar structure has a specific capacity 38% higher than the electrode with spherical microstructure (grown at 450 degrees C). Impedance measurements on the Co3O4 electrode grown at 500 degrees C also carried out to study the kinetics of the electrode process. (C) 2014 Published by Elsevier B.V.
Resumo:
A reactive polymer nanocomposite system was proposed as an effective water vapor barrier material for organic device encapsulation. Nanosized magnesium oxide (MgO) was synthesized by the solution combustion technique using two different fuels, lactose and alanine. The purity and crystallite size of MgO were determined from X-ray diffraction studies. The surface areas and porosity measurements were used to determine the water adsorption capacities of MgO. Nanocomposites with various concentrations (wt% = 0.25, 0.5, 1 and 2.5) of MgO were prepared using Surlyn as the base polymer. The permeation rate of moisture through the fabricated films was calculated using calcium degradation test and these rates were further used to calculate the diffusivities. Accelerated aging experiments were conducted to study the performance of organic photovoltaic devices encapsulated with synthesized films under accelerated weathering conditions. The performance of the barrier materials with synthesized MgO was also compared to that obtained with commercial MgO. The films containing MgO obtained from lactose exhibited better barrier properties compared to other films made with commercial MgO and MgO synthesized using alanine as well as other nanocomposites reported in the literature.
Resumo:
Two species of Pleurotus, Pleurotus florida and Pleurotus flabellatus were cultivated on two agro-residues (paddy straw; PS and coir pith; CP) singly as well as in combination with biogas digester residue (BDR, main feed leaf biomass). The biological efficiency, nutritional value, composition and nutrient balance (C, N and P) achieved with these substrates were studied. The most suitable substrate that produced higher yields and biological efficiency was PS mixed with BDR followed by coir pith with BDR. Addition of BDR with agro-residues could increase mushroom yield by 20-30%. The biological efficiency achieved was high for PS + BDR (231.93% for P. florida and 209.92% for P. flabellatus) and for CP + BDR (14831% for P. florida and 188.46% for P. flabellatus). The OC (organic carbon), TKN (nitrogen) and TP (phosphate) removal of the Pleurotus spp. under investigation suggests that PS with BDR is the best substrate for growing mushroom. (C) 2015 Published by Elsevier Inc. on behalf of International Energy Initiative.
Resumo:
Herein we report the synthesis, characterization, and potential application of his (4- (7,9,10-triphenylfluoranthen-8-yl)pheny)sulfone (TPFDPSO2) and 2,8-bis (7,9,10-triphenylfluoranthen-8-yl) dibenzo b, d]-thiophene 5,5-dioxide (TPFDBTO2) as electron transport as well as light-emitting materials. These fluoranthene derivatives were synthesized by oxidation of their corresponding parent sulfide compounds, which were prepared via Diels-Alder reaction. These materials exhibit deep blue fluorescence emission in both solution and thin film, high photoluminescence quantum yield (PLQY), thermal and electrochemical stability over a wide potential range. Hole- and electron-only devices were fabricated to study the charge transport characteristics, and predominant electron transport property comparable with that of a well-known electron transport material, Alq(3), was observed. Furthermore, bilayer electroluminescent devices were fabricated utilizing these fluoranthene derivatives as electron transport as well as emitting layer, and device performance was compared with that of their parent sulfide molecules. The electroluminescence (EL) devices fabricated with these molecules displayed bright sky blue color emission and 5-fold improvement in external quantum efficiency (EQE) with respect to their parent compounds.
Resumo:
We have investigated the multiferroic and glassy behaviour of metal-organic framework (MOF) material (CH3)(2)NH2Co(CHOO)(3). The compound has perovskite-like architecture in which the metal-formate forms a framework. The organic cation (CH3)(2)NH2+ occupies the cavities in the formate framework in the framework via N-H center dot center dot center dot O hydrogen bonds. At room temperature, the organic cation is disordered and occupies three crystallographically equivalent positions. Upon cooling, the organic cation is ordered which leads to a structural phase transition at 155 K. The structural phase transition is associated with a para-ferroelectric phase transition and is revealed by dielectric and pyroelectric measurements. Further, a PE hysteresis loop below 155 K confirms the ferroelectric behaviour of the material. Analysis of dielectric data reveal large frequency dispersion in the values of dielectric constant and tan delta which signifies the presence of glassy dielectric behaviour. The material displays a antiferromagnetic ordering below 15 K which is attributed to the super-exchange interaction between Co2+ ions mediated via formate linkers. Interestingly, another magnetic transition is also found around 11 K. The peak of the transition shifts to lower temperature with increasing frequency, suggesting glassy magnetism in the sample. (C) 2016 AIP Publishing LLC.
Resumo:
Recent advancements of material science and its applications have been immensely influenced by the modern development of organic luminescent materials. Among all organic luminogens, boron containing compounds have already established their stature as one of the indispensable classes of luminescent dyes. Boron, in its various forms e. g. triarylboranes, borate dyes and boron clusters, has attracted considerable attention owing to its several unique and excellent photophysical features. In very recent times, beyond the realms of solution-state studies, luminescent boron-containing compounds have emerged as a large and versatile class of stimuli responsive materials. Based on several fundamental concepts of chemistry, researchers have come up with an admirable variety of boron-containing materials with AIE (aggregation-induced emission), mechano-responsive luminescence, thermoresponsive-luminescence as well as a number of purely organic phosphorescent materials and other standalone examples. The unique chemical as well as physical properties of boron-containing compounds are largely responsible for the development of such materials. In this review these new findings are brought together.