996 resultados para O and H antigens
Resumo:
Rheumatic fever (RF)/rheumatic heart disease (RHD) and post-streptococcal glomerulonephritis are thought to be autoimmune diseases, and follow group A streptococcal (GAS) infection. Different GAS M types have been associated with rheumatogenicity or nephritogenicity and categorized into either of two distinct classes (I or II) based on amino acid sequences present within the repeat region ('C' repeats) of the M protein. Sera from ARF patients have previously been shown to contain elevated levels of antibodies to the class I-specific epitope and myosin with the class I-specific antibodies also being cross-reactive to myosin, suggesting a disease association. This study shows that immunoreactivity of the class I-specific peptide and myosin does not differ between controls and acute RF (ARF)/RHD in populations that are highly endemic for GAS, raising the possibility that the association is related to GAS exposure, not the presence of ARF/RHD. Peptide inhibition studies suggest that the class I epitope may be conformational and residue 10 of the peptide is critical for antibody binding. We demonstrate that correlation of antibody levels between the class I and II epitope is due to class II-specific antibodies recognizing a common epitope with class I which is contained within the sequence RDL-ASRE. Our results suggest that antibody prevalence to class I and II epitopes and myosin is associated with GAS exposure, and that antibodies to these epitopes are not an indicator of disease nor a pathogenic factor in endemic populations.
Resumo:
Porphyromonas gingivalis is a key periodontal pathogen which has been implicated in the etiology of chronic adult periodontitis. Our aim was to develop a protein based vaccine for the prevention and or treatment of this disease. We used a whole genome sequencing approach to identify potential vaccine candidates. From a genomic sequence, we selected 120 genes using a series of bioinformatics methods. The selected genes were cloned for expression in Escherichia coli and screened with P. gingivalis antisera before purification and testing in an animal model. Two of these recombinant proteins (PG32 and PG33) demonstrated significant protection in the animal model, while a number were reactive with various antisera. This process allows the rapid identification of vaccine candidates from genomic data. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Vaccines to efficiently block or limit sexual transmission of both HIV and human papilloma virus (HPV) are urgently needed. Chimeric virus-like-particle (VLP) vaccines consisting of both multimerized HPV L1 proteins and fragments of SIV gag p27, HIV-1 tat, and HIV-1 rev proteins (HPV-SHIV VLPs) were constructed and administered to macaques both systemically and mucosally. An additional group of macaques first received a priming vaccination with DNA vaccines expressing the same SIV and HIV-1 antigens prior to chimeric HPV-SHIV VLP boosting vaccinations. Although HPV L1 antibodies were induced in all immunized macaques, weak antibody or T cell responses to the chimeric SHIV antigens were detected only in animals receiving the DNA prime/HPV-SHIV VLP boost vaccine regimen. Significant but partial protection from a virulent mucosal SHIV challenge was also detected only in the prime/boosted macaques and not in animals receiving the HPV-SHIV VLP vaccines alone, with three of five prime/boosted animals retaining some CD4+ T cells following challenge. Thus, although some immunogenicity and partial protection was observed in non-human primates receiving both DNA and chimeric HPV-SHIV VLP vaccines, significant improvements in vaccine design are required before we can confidently proceed with this approach to clinical trials. (C) 2002 Elsevier Science (USA).
Resumo:
Binding of cell surface carbohydrates to their receptors specifically promotes axon growth and synaptogenesis in select regions of the developing nervous system. In some cases these interactions depend upon cell-cell adhesion mediated by the same glycoconjugates present on the surface of apposing cells or their processes. We have previously shown that the plant lectin Dolichos biflorus agglutinin (DBA) binds to: a subpopulation of mouse primary olfactory neurons whose axons selectively fasciculate prior to terminating in the olfactory bulb. In the present study, we investigated whether these glycoconjugates were also expressed by postsynaptic olfactory neurons specifically within the olfactory pathway. We show here for the first time that DBA ligands were expressed both by a subset of primary olfactory neurons as well as by the postsynaptic mitral/tufted cells in BALB/C mice. These glycoconjugates were first detected on mitral/tufted cell axons during the early postnatal period, at a time when there is considerable synaptogenesis and synaptic remodelling in the primary olfactory cortex. This is one of the few examples of the selective expression of molecules in contiguous axon tracts in the mammalian nervous system. These results suggest that glycoconjugates recognized by DBA may have a specific role in the formation and maintenance of neural connections within a select functional pathway in the brain. J. Comp. Neurol. 443:213-225, 2002. (C) 2002 Wiley-Liss, Inc.
Resumo:
This study examined the nature of the infiltrating cells in Porphyromonas gingivalis-induced lesions and immunoglobulins in the serum samples of BALB/c (H-2(d)), C57BL6 (H-2(b)), DBA/2J (H-2(d)) and CBA/CaH (H-2(k)) mice. Mice were immunized intraperitoneally with P. gingivalis outer membrane antigens or sham-immunized with phosphate-buffered saline followed by subcutaneous challenge with live organisms 1 week after the final immunization. The resulting skin abscesses were excised 7 days later, cryostat sections cut and an immunoperoxidase method used to detect the presence of CD4(+) and CD8(+) T-cell subsets, CD14(+) macrophages and CD19(+) B cells. Peroxidase positive neutrophils and IgG1- and IgG2a-producing plasma cells were also identified. Anti P. gingivalis IgG1 and IgG2a subclass antibodies were determined in serum obtained by cardiac puncture. Very few CD8(+) T cells and CD19(+) B cells were found in any of the lesions. The percentages of CD4(+) cells, CD14(+) cells and neutrophils were similar in lesions of immunized BALB/c and C57BL6 mice, with a trend towards a higher percentage of CD14(+) cells in sham-immunized mice. The percentage of CD14(+) cells was higher than that of CD4(+) cells in immunized compared with sham-immunized DBA/2J mice. The percentages of CD4(+) and CD14(+) cells predominated in immunized CBA/CaH mice and CD4(+) cells in sham-immunized CBA/CaH mice. The percentage of neutrophils in immunized CBA/CaH mice was significantly lower than that of CD14(+) cells and CD4(+) cells in sham-immunized mice. IgG1(+) plasma cells were more dominant than IgG2a(+) cells in immunized BALB/c, C57BL6 and DBA/2J mice, whereas IgG2a(+) plasma cells were more obvious in sham-immunized mice. IgG2a(+) plasma cells were predominant in immunized and sham-immunized CBA/CaH mice. In the serum, specific anti-P. gingivalis IgG2a antibody levels (Th1 response) were higher than IgG1 levels (Th2 response) in sham-immunized CBA/CaH and DBA/2J mice. In immunized BALB/c mice, IgG2a levels were lower than IgG1 levels, while IgG2a levels were higher in immunized C57BL6 mice. In conclusion, this study has shown differences in the proportion of infiltrating leukocytes and in the subclasses of immunoglobulin produced locally and systemically in response to P. gingivalis in different strains of mice, suggesting a degree of genetic control over the response to P. gingivalis.
Resumo:
Multiple HLA class I alleles can bind peptides with common sequence motifs due to structural similarities in the peptide binding cleft, and these groups of alleles have been classified into supertypes. Nine major HLA supertypes have been proposed, including an A24 supertype that includes A*2301, A*2402, and A*3001. Evidence for this A24 supertype is limited to HLA sequence homology and/or similarity in peptide binding motifs for the alleles. To investigate the immunological relevance of this proposed supertype, we have examined two viral epitopes (from EBV and CMV) initially defined as HLA-A*2301-binding peptides. The data clearly demonstrate that each peptide could be recognized by CTL clones in the context of A*2301 or A*2402; thus validating the inclusion of these three alleles within an A24 supertype. Furthermore, CTL responses to the EBV epitope were detectable in both A*2301(+) and A*2402(+) individuals who had been previously exposed to this virus. These data substantiate the biological relevance of the A24 supertype, and the identification of viral epitopes with the capacity to bind promiscuously across this supertype could aid efforts to develop CTL-based vaccines or immunotherapy. The degeneracy in HLA restriction displayed by some T cells in this study also suggests that the dogma of self-MHC restriction needs some refinement to accommodate foreign peptide recognition in the context of multiple supertype alleles.
Resumo:
Human cytomegalovirus (HCMV) can establish both nonproductive (latent) and productive (lytic) infections. Many of the proteins expressed during these phases of infection could be expected to be targets of the immune response; however, much of our understanding of the CD8(+)-T-cell response to HCMV is mainly based on the pp65 antigen. Very little is known about T-cell control over other antigens expressed during the different stages of virus infection; this imbalance in our understanding undermines the importance of these antigens in several aspects of HCMV disease pathogenesis. In the present study, an efficient and rapid strategy based on predictive bioinformatics and ex vivo functional T-cell assays was adopted to profile CD8(+)-T-cell responses to a large panel of HCMV antigens expressed during different phases of replication. These studies revealed that CD8(+)-T-cell responses to HCMV often contained multiple antigen-specific reactivities, which were not just constrained to the previously identified pp65 or IE-1 antigens. Unexpectedly, a number of viral proteins including structural, early/late antigens and HCMV-encoded immunomodulators (pp28, pp50, gH, gB, US2, US3, US6, and UL18) were also identified as potential targets for HCMV-specific CD8(+)-T-cell immunity. Based on this extensive analysis, numerous novel HCMV peptide epitopes and their HLA-restricting determinants recognized by these T cells have been defined. These observations contrast with previous findings that viral interference with the antigen-processing pathway during lytic infection would render immediate-early and early/late proteins less immunogenic. This work strongly suggests that successful HCMV-specific immune control in healthy virus carriers is dependent on a strong T-cell response towards a broad repertoire of antigens.
Resumo:
Development of an epitope-based vaccination strategy designed to enhance Epstein-Barr virus (EBV)-specific CD8(+) cytotoxic T lymphocytes (CTLs) is increasingly being considered as a preferred approach for the treatment of EBV-associated relapsed Hodgkin disease (HD) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane proteins, LMP1 and LMP2, are the only target antigens available for therapeutic augmentation of CTL responses in patients with HD and NPC. Here, we describe preclinical studies using a recombinant poxvirus vaccine that encodes a polyepitope protein comprising 6 HLA A2-restricted epitopes derived from LMP1. Human cells infected with this recombinant polyepitope construct were efficiently recognized by LM1-specific CTL lines from HLAA2 healthy individuals. Furthermore, immunization of HLrA A2/K-b mice with this polyepitope vaccine consistently generated strong LMP1 -specific CTL responses to 5 of the. 6 epitopes, which were readily detected by both ex vivo and in vitro assays. More important, this polyepitope vaccine successfully reversed the outgrowth of LMP1-expressing tumors in HLA A2/Kb mice. These studies provide an important platform for the development of an LMP-based polyepitope vaccine as an immunotherapeutic tool for the treatment of EBV-associated HD and NPC. (C) 2003 by The American Society of Hematology.
Resumo:
A blocking ELISA targeting an immunodominant West Nile epitope on the West Nile Virus NS1 protein was assessed for the detection of West Nile-specific antibodies in blood samples collected from 584 sentinel chickens and 238 wild birds collected in-New Jersey from May-December 2000. Ten mallard ducks (Anas platyrhynchos) experimentally infected with West Nile virus and six uninfected controls were also tested. The ELISA proved specific in detecting WNV antibodies in 9/10 chickens and 4/4 wild birds previously confirmed as positive by Plaque Reduction Neutralization test (PRNT) at the Center for Disease Control, Division of Vector Borne Diseases, Fort Collins, CO, USA (CDC). Nine out of the ten experimentally infected mallard ducks also tested positive for WN antibodies in the blocking ELISA, while 6/6 uninfected controls did not. Additionally, 1705 wild birds, collected in New Jersey from December 2000-November 2001 and Long Island, New York between November 1999 and August 2001 were also tested for WN antibodies by the blocking ELISA. These tests identified 30 positive specimens, 12 of which had formalin-fixed tissues available to allow detection of WN specific viral antigen in various tissues by WNV-specific immunohistochemistry. Our results indicate that rapid and specific detection of antibodies to WN virus in sera from a range of avian species by blocking ELISA is an effective strategy for WN Virus surveillance in avian hosts. In combination with detection of WN-specific antigens in tissues by immunohistochemistry (IHC) the blocking ELISA will also be useful for confirming WN infection in diseased birds.
Resumo:
A fast and direct surface plasmon resonance (SPR) method for the kinetic analysis of the interactions between peptide antigens and immobilised monoclonal antibodies (mAb) has been established. Protocols have been developed to overcome the problems posed by the small size of the analytes (< 1600 Da). The interactions were well described by a simple 1:1 bimolecular interaction and the rate constants were self-consistent and reproducible. The key features for the accuracy of the kinetic constants measured were high buffer flow rates, medium antibody surface densities and high peptide concentrations. The method was applied to an extensive analysis of over 40 peptide analogues towards two distinct anti-FMDV antibodies, providing data in total agreement with previous competition ELISA experiments. Eleven linear 15-residue synthetic peptides, reproducing all possible combinations of the four replacements found in foot-and-mouth disease virus (FMDV) field isolate C-S30, were evaluated. The direct kinetic SPR analysis of the interactions between these peptides and three anti-site A mAbs suggested additivity in all combinations of the four relevant mutations, which was confirmed by parallel ELISA analysis. The four-point mutant peptide (A15S30) reproducing site A from the C-S30 strain was the least antigenic of the set, in disagreement with previously reported studies with the virus isolate. Increasing peptide size from 15 to 21 residues did not significantly improve antigenicity. Overnight incubation of A15S30 with mAb 4C4 in solution showed a marked increase in peptide antigenicity not observed for other peptide analogues, suggesting that conformational rearrangement could lead to a stable peptide-antibody complex. In fact, peptide cyclization clearly improved antigenicity, confirming an antigenic reversion in a multiply substituted peptide. Solution NMR studies of both linear and cyclic versions of the antigenic loop of FMDV C-S30 showed that structural features previously correlated with antigenicity were more pronounced in the cyclic peptide. Twenty-six synthetic peptides, corresponding to all possible combinations of five single-point antigenicity-enhancing replacements in the GH loop of FMDV C-S8c1, were also studied. SPR kinetic screening of these peptides was not possible due to problems mainly related to the high mAb affinities displayed by these synthetic antigens. Solution affinity SPR analysis was employed and affinities displayed were generally comparable to or even higher than those corresponding to the C-S8c1 reference peptide A15. The NMR characterisation of one of these multiple mutants in solution showed that it had a conformational behaviour quite similar to that of the native sequence A15 and the X-ray diffraction crystallographic analysis of the peptide ? mAb 4C4 complex showed paratope ? epitope interactions identical to all FMDV peptide ? mAb complexes studied so far. Key residues for these interactions are those directly involved in epitope ? paratope contacts (141Arg, 143Asp, 146His) as well as residues able to stabilise a particular peptide global folding. A quasi-cyclic conformation is held up by a hydrophobic cavity defined by residues 138, 144 and 147 and by other key intrapeptide hydrogen bonds, delineating an open turn at positions 141, 142 and 143 (corresponding to the Arg-Gly-Asp motif).
Resumo:
Aspergillus is among a growing list of allergens that aggravate asthmatic responses. Significant pulmonary pathology is associated with Aspergillus-induced allergic and asthmatic lung disease. Environments with high levels of exposure to fungi are found in animal production facilities such as for swine and poultry, and farmers working with these are at increased risk for occupational respiratory diseases. Seven Portuguese poultry and seven swine farms were analyzed in order to estimate the prevalence, amount, and distribution of Aspergillus species, as well as to determine the presence of clinical symptoms associated with asthma and other allergy diseases in these highly contaminated settings. From the collected fungal isolates (699), an average incidence of 22% Aspergillus was detected in poultry farms, while the prevalence at swine farms was 14%. The most frequently isolated Aspergillus species were A. versicolor, A. flavus, and A. fumigatus. In poultry farms, A. flavus presented the highest level of airborne spores (>2000 CFU/m3), whereas in swine farms the highest was A. versicolor, with an incidence fourfold greater higher than the other mentioned species. Eighty workers in these settings were analyzed, ranging in age from 17 to 93 yr. The potentially hazardous exposure of poultry workers to mold allergens using sensitization markers was evaluated. Although no significant positive association was found between fungal contamination and sensitization to fungal antigens, a high incidence of respiratory symptoms in professionals without asthma was observed, namely, wheezing associated with dyspnea (23.8%) and dyspnea after strenuous activities (12.3%), suggesting underdiagnosed respiratory disturbances. Further, 32.5% of all exposed workers noted an improvement of respiratory ability during resting and holidays. From all the analyzed workers, seven were previously diagnosed with asthma and four reported the first attack after the age of 40 yr, which may be associated with their occupational exposure. Some of the fungi, namely, the Aspergillus species detected in this study, are known to induce hypersensitivity reactions in humans. This study confirmed the presence and distribution of Aspergillus in Portuguese poultry and swine farms, suggesting a possible occupational health problem and raising the need for preventive and protective measures to apply to avoid exposure in both occupational settings.
Resumo:
C3H/He and C57B1/6 mice were inoculated with 500 Trypanosoma cruzi trypomastigotes (Strain Y). During the acute phase infected mice presented parasitemia and enlargement of lymph nodes and spleens and intracellular parasites were observed in the heart. Examinations of cells derived from spleen and lymph nodes showed increased numbers of IgM and IgG-bearing cells. During the peak of splenomegaly, about day 17 post-infections, splenic lymphocytes showed a marked decrease in responsiveness to T and B-cell mitogens, parasite antigens and plaque forming cells (PFC) to sheep red blood cells (SRBC). Unfractionated or plastic adherent splenic cells from mice, obtained during the acute phase were able to suppress the response to mitogens by lymphocytes from uninfected mice. During the chronic phase. Disappearance of parasitemia and intracellular parasites in the hearts as well as a decrease in spleen size, was observed. These changes preceded the complete recovery of responsiveness to mitogens and T. cruzi antigens by C57B1/6 splenic lymphocytes. However, this recovery was only partial in the C3H/He mice, known to be more sensitive to T. cruzi infection. Partial recovery of humoral immune response also occurred in both strains of mice during the chronic phase.
Resumo:
Methods generally utilized for studies on anaphylaxis to protein antigens such as determination of histamine release to the blood, hemoconcentration, histamine release from peritoneal mast cells and passive cutaneous anaphylaxis (PCA) were used to investigate some aspects of the anaphylaxis to parasite antigens in Schistosoma mansoni infected mice. The release of histamine to the blood and significant rates of hemoconcentration were induced by intravenous injection of schistosomula or cercarial extracts into 10-13 weeks infected mice. Cercarial, schistosomula, worm tegument and soluble egg antigens were able to trigger histamine release from peritoneal mast cells from chronically infected mice. In spite of the PCA reaction beeing detected within 2 hours of sensitization (IgG1antibodies) in 6 of 8 tested sera from chronically infected mice, no detectable reactions were obtained after 48 hours sensitization (IgE antibodies). Although IgE was not detected in the circulation, by the PCA technique, the results indicate that the infected mice contained IgE antibodies bound to their mast cells.
Resumo:
Next-generation vaccines for tuberculosis should be designed to prevent the infection and to achieve sterile eradication of Mycobacterium tuberculosis. Mucosal vaccination is a needle-free vaccine strategy that provides protective immunity against pathogenic bacteria and viruses in both mucosal and systemic compartments, being a promising alternative to current tuberculosis vaccines. Micro and nanoparticles have shown great potential as delivery systems for mucosal vaccines. In this review, the immunological principles underlying mucosal vaccine development will be discussed, and the application of mucosal adjuvants and delivery systems to the enhancement of protective immune responses at mucosal surfaces will be reviewed, in particular those envisioned for oral and nasal routes of administration. An overview of the essential vaccine candidates for tuberculosis in clinical trials will be provided, with special emphasis on the potential different antigens and immunization regimens.
Resumo:
Leishmania braziliensis braziliensis(MHOM/BR/75/M2903) was grown in Schneider's Drosophila medium. In one set of experiments promastigotes were already adapted to the medium by means of serial passages whereas in the second cells were grown in a biphasic medium and transfered to the liquid. Growth was more abundant for culture medium adapted cells; degenerate cells in small numbers as well as dead ones were present from day 5 for promastigotes adapted to liquid medium and from day 3 for newly adapted cells. Synthesis of surface antigens differed according to length of cell culture as assessed by the titer of five mucocutaneous leishmaniasis sera on subsequent days. Five days of culture for cells already adapted to the culture medium and 3 days for newly adapted ones were judged to be the best for the preparation of immunofluorescence antigens.