994 resultados para Nuclear transfer
Resumo:
The implementation of three-phase sinusoidal pulse-width-modulated inverter control strategy using microprocessor is discussed in this paper. To save CPU time, the DMA technique is used for transferring the switching pattern from memory to the pulse amplifier and isolation circuits of individual thyristors in the inverter bridge. The method of controlling both voltage and frequency is discussed here.
Resumo:
Abstract is not available.
Resumo:
Analysis of 35S labled nucleosides prepared from tRNA of Pseudomonas aeruginosa by phosphocellulose column chromatography, thin layer chromatography and Sephadex LH-20 column chromatography revealed the presence of 2-methylthioribosylzeatin in it. 2iPA, 6-(3-methyl-2-butenylamino)-9-β-D-ribofuranosyl purine; ms-2iPA, 6-(3-methyl-2-butenylamino)-2-methylthio-9-β-D-ribofuranosylpurine; ribosyl-cis-zeatin, 6-(4-hydroxy-3-methyl-cis-2-butenylamino)-9-β-D-ribofuranosylpurine; ribosyl-trans-zeatin, 6-(4-hydroxy-3-methyl-trans-2-butenylamino)-9-β-D-ribofuranosylpurine; ms-ribosylzeatin, 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-D-ribofuranosylpurine; s4U2, 4-thiouridine; s2U*, 5-methylaminomethyl-2-thiouridine; s2C, 2-thiocytidine; TLC — thin layer chromatography.
Resumo:
A new rock mass classification scheme, the Host Rock Classification system (HRC-system) has been developed for evaluating the suitability of volumes of rock mass for the disposal of high-level nuclear waste in Precambrian crystalline bedrock. To support the development of the system, the requirements of host rock to be used for disposal have been studied in detail and the significance of the various rock mass properties have been examined. The HRC-system considers both the long-term safety of the repository and the constructability in the rock mass. The system is specific to the KBS-3V disposal concept and can be used only at sites that have been evaluated to be suitable at the site scale. By using the HRC-system, it is possible to identify potentially suitable volumes within the site at several different scales (repository, tunnel and canister scales). The selection of the classification parameters to be included in the HRC-system is based on an extensive study on the rock mass properties and their various influences on the long-term safety, the constructability and the layout and location of the repository. The parameters proposed for the classification at the repository scale include fracture zones, strength/stress ratio, hydraulic conductivity and the Groundwater Chemistry Index. The parameters proposed for the classification at the tunnel scale include hydraulic conductivity, Q´ and fracture zones and the parameters proposed for the classification at the canister scale include hydraulic conductivity, Q´, fracture zones, fracture width (aperture + filling) and fracture trace length. The parameter values will be used to determine the suitability classes for the volumes of rock to be classified. The HRC-system includes four suitability classes at the repository and tunnel scales and three suitability classes at the canister scale and the classification process is linked to several important decisions regarding the location and acceptability of many components of the repository at all three scales. The HRC-system is, thereby, one possible design tool that aids in locating the different repository components into volumes of host rock that are more suitable than others and that are considered to fulfil the fundamental requirements set for the repository host rock. The generic HRC-system, which is the main result of this work, is also adjusted to the site-specific properties of the Olkiluoto site in Finland and the classification procedure is demonstrated by a test classification using data from Olkiluoto. Keywords: host rock, classification, HRC-system, nuclear waste disposal, long-term safety, constructability, KBS-3V, crystalline bedrock, Olkiluoto
Resumo:
tRNA isolated from . grown in a medium containing [75Se] sodium selenosulfate was converted to nucleosides and analysed for selenonucleosides on a phosphocellulose column. Upon chromatography of the nucleosides on phosphocellulose column, the radioactivity resolved into three peaks. The first peak consisted of free selenium and traces of undigested nucleotides. The second peak was identified as 4-selenouridine by co-chromatographing with an authentic sample of 4-selenouridine. The identity of the third peak was not established. The second and third peaks represented 93% and 7% of the selenium present in nucleosides respectively.
Resumo:
On the basis of dodecahedral structure of a foam bed, a model to predict conversion in a foam bed contactor with mass transfer with chemical reaction has been developed. To verify the proposed model, experiments have been carried out in a semi-batch apparatus for the absorption of lean CO2 gas in a foam of sodium hydroxide solution. The proposed model predicts fairly well the experimentally found absorption values.
Resumo:
35S-Labeled thionucleosides prepared from Escherichia coli and Pseudomonas aeruginosa tRNAs were chromatographed separately on a phosphocellulose column with a linear salt gradient of 0.005–0.1 M ammonium formate (pH 3.9). The thionucleosides of E. coli tRNA were quantitatively separated into four peaks which were identified using authentic samples as 4-thiouridine (78 %), 2-methylthio-N6-isopentenyladenosine (8 %), 2-thiocytidine (2.5 %) and 5-methylaminomethyl-2-thiouridine (11.5 %). In the case of P. aeruginosa tRNA four radioactive thionucleoside peaks were also observed. One major difference was the almost complete absence of 2-methylthio-N6-isopentenyladenosine and the presence of a new peak of radioactivity in the nucleosides of P. aeruginosa. The relative proportions of the various thionucleosides were found to be different in E. coli and P. aeruginosa tRNAs.
Resumo:
Summary We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3′-N-P-P3-M-G-P6-L-5′. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3′ leader and 5′ trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cell periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses.
Resumo:
This work develops methods to account for shoot structure in models of coniferous canopy radiative transfer. Shoot structure, as it varies along the light gradient inside canopy, affects the efficiency of light interception per unit needle area, foliage biomass, or foliage nitrogen. The clumping of needles in the shoot volume also causes a notable amount of multiple scattering of light within coniferous shoots. The effect of shoot structure on light interception is treated in the context of canopy level photosynthesis and resource use models, and the phenomenon of within-shoot multiple scattering in the context of physical canopy reflectance models for remote sensing purposes. Light interception. A method for estimating the amount of PAR (Photosynthetically Active Radiation) intercepted by a conifer shoot is presented. The method combines modelling of the directional distribution of radiation above canopy, fish-eye photographs taken at shoot locations to measure canopy gap fraction, and geometrical measurements of shoot orientation and structure. Data on light availability, shoot and needle structure and nitrogen content has been collected from canopies of Pacific silver fir (Abies amabilis (Dougl.) Forbes) and Norway spruce (Picea abies (L.) Karst.). Shoot structure acclimated to light gradient inside canopy so that more shaded shoots have better light interception efficiency. Light interception efficiency of shoots varied about two-fold per needle area, about four-fold per needle dry mass, and about five-fold per nitrogen content. Comparison of fertilized and control stands of Norway spruce indicated that light interception efficiency is not greatly affected by fertilization. Light scattering. Structure of coniferous shoots gives rise to multiple scattering of light between the needles of the shoot. Using geometric models of shoots, multiple scattering was studied by photon tracing simulations. Based on simulation results, the dependence of the scattering coefficient of shoot from the scattering coefficient of needles is shown to follow a simple one-parameter model. The single parameter, termed the recollision probability, describes the level of clumping of the needles in the shoot, is wavelength independent, and can be connected to previously used clumping indices. By using the recollision probability to correct for the within-shoot multiple scattering, canopy radiative transfer models which have used leaves as basic elements can use shoots as basic elements, and thus be applied for coniferous forests. Preliminary testing of this approach seems to explain, at least partially, why coniferous forests appear darker than broadleaved forests in satellite data.
Resumo:
Fetal flavor conditioning during the perinatal stage could be essential at the time of the weaning to reduce the stress and improve the feed intake in pigs. The transfer of flavor compounds from maternal diet to amniotic fluid and milk has been shown in behavioral experiments, but not through analytical procedures such as gas chromatography–mass spectrometry (GC–MS). The aim of the experiment was to trace the principal essential oils compounds supplied in the diet in maternal fluids. Twenty Large White sows around their 104th gestational day were allocated to individual farrowing crates. Two groups of 10 sows were fed either a standard gestation diet or the same diet supplemented with a mix of 8 essential oils at a rate of 1kg/ton during the last 10 days of gestation. At approximately the 113th gestational day, animals were individually treated with 10mg of Lutalyse IM was to induce farrowing. Fresh amniotic fluid was collected during the farrowing in 100-mL glass bottles and immediately stored at −20 °C freezer. During the second lactation day, 10–20 IU of Oxytocin IM was administered to each sow to facilitate collection of milk samples in 20-mL glass bottles. The samples were stored at −20 °C until analyzed by GC–MS. The presence of significant amounts of principal components of all the essential oils except one were found in the milk and amniotic fluid samples of the treated sows relative to the control sows. Our data prove the transfer of selected dietary flavors to maternal fluids and sets the scenario for further trials to manipulate postweaning behavior in piglets.
Resumo:
Analysis of 35S labled nucleosides prepared from tRNA of Pseudomonas aeruginosa by phosphocellulose column chromatography, thin layer chromatography and Sephadex LH-20 column chromatography revealed the presence of 2-methylthioribosylzeatin in it. 2iPA, 6-(3-methyl-2-butenylamino)-9-β-D-ribofuranosyl purine; ms-2iPA, 6-(3-methyl-2-butenylamino)-2-methylthio-9-β-D-ribofuranosylpurine; ribosyl-cis-zeatin, 6-(4-hydroxy-3-methyl-cis-2-butenylamino)-9-β-D-ribofuranosylpurine; ribosyl-trans-zeatin, 6-(4-hydroxy-3-methyl-trans-2-butenylamino)-9-β-D-ribofuranosylpurine; ms-ribosylzeatin, 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-D-ribofuranosylpurine; s4U2, 4-thiouridine; s2U*, 5-methylaminomethyl-2-thiouridine; s2C, 2-thiocytidine; TLC — thin layer chromatography.
Resumo:
Resonance energy transfer (RET) from the visible emission of core−shell ZnO:MgO nanocrystals to Nile Red chromophores, following band gap excitation in the UV, has been investigated for four different nanocrystal sizes. With use of steady state and time-resolved fluorescence spectroscopic measurements the wavelength dependent RET efficiencies have been determined. The RET process in ZnO:MgO nanocrystals occurs from emissions involving trap state recombination. There are two such processes with different RET efficiencies for the same particle size. This is shown to be a consequence of the fact that the recombination processes giving rise to the two emissions are located at different distances from the center of the particle so that the donor−acceptor distances for the two are different, even for the same particle size.
Resumo:
Forward facing circular nose cavity of 6 mm diameter in the nose portion of a generic missile shaped bodies is proposed to reduce the stagnation zone heat transfer. About 25% reduction in stagnation zone heat transfer is measured using platinum thin film sensors at Mach 8 in the IISc hypersonic shock tunnel. The presence of nose cavity does not alter the fundamental aerodynamic coefficients of the slender body. The experimental results along with the numerically predicted results is also discussed in this paper.