993 resultados para Normal uptake
Resumo:
Purpose: Cardiac 18F-FDG PET is considered as the gold standard to assess myocardial metabolism and infarct size. The myocardial demand for glucose can be influenced by fasting and/or following pharmacological preparation. In the rat, it has been previously shown that fasting combined with preconditioning with acipimox, a nicotinic acid derivate and lipidlowering agent, increased dramatically 18F-FDG uptake in the myocardium. Strategies aimed at reducing infarct scar are evaluated in a variety of mouse models. PET would particularly useful for assessing cardiac viability in the mouse. However, prior knowledge of the best preparation protocol is a prerequisite for accurate measurement of glucose uptake in mice. Therefore, we studied the effect of different protocols on 18F-FDG uptake in the mouse heart.Methods: Mice (n = 15) were separated into three treatment groups according to preconditioning and underwent a 18FDG PET scan. Group 1: No preconditioning (n = 3); Group 2: Overnight fasting (n = 8); and Group 3: Overnight fasting and acipimox (25mg/kg SC) (n = 4). MicroPET images were processed with PMOD to determine 18F-FDG mean standard uptake value (SUV) at 30 min for the whole left ventricle (LV) and for each region of the 17-segments AHA model. For comparisons, we used Mann-Whitney test and multilevel mixed-effects linear regression (Stata 11.0).Results: In total, 27 microPET were performed successfully in 15 animals. Overnight fasting led to a dramatic increase in LV-SUV compared to mice without preconditioning (8.6±0.7g/mL vs. 3.7±1.1g/mL, P<0.001). In addition, LV-SUV was slightly but not significantly higher in animals treated with acipimox compared to animals with overnight fasting alone (10.2±0.5 g/mL, P = 0.06). Fastening increased segmental SUV by 5.1±0.5g/mL as compared to free-feeding mice (from 3.7±0.8g/mL to 8.8±0.4g/mL, P<0.001); segmental-SUV also significantly increased after administration of acipimox (from 8.8±0.4g/mL to 10.1±0.4g/mL, P<0.001).Conclusion: Overnight fasting led to myocardial glucose deprivation and increases 18F-FDG myocardial uptake. Additional administration of acipimox enhances myocardial 18F-FDG uptake, at least at the segmental level. Thus, preconditioning with acipimox may provide better image quality that may help for assessing segmental myocardial metabolism.
Resumo:
PURPOSE: As the magnetic susceptibility induced frequency shift increases linearly with magnetic field strength, the present work evaluates manganese as a phase imaging contrast agent and investigates the dose dependence of brain enhancement in comparison to T1 -weighted imaging after intravenous administration of MnCl2 . METHODS: Experiments were carried out on 12 Sprague-Dawley rats. MnCl2 was infused intravenously with the following doses: 25, 75, 125 mg/kg (n=4). Phase, T1 -weighted images and T1 maps were acquired before and 24h post MnCl2 administration at 14.1 Tesla. RESULTS: Manganese enhancement was manifested in phase imaging by an increase in frequency shift differences between regions rich in calcium gated channels and other tissues, together with local increase in signal to noise ratio (from the T1 reduction). Such contrast improvement allowed a better visualization of brain cytoarchitecture. The measured T1 decrease observed across different manganese doses and in different brain regions were consistent with the increase in the contrast to noise ratio (CNR) measured by both T1 -weighted and phase imaging, with the strongest variations being observed in the dentate gyrus and olfactory bulb. CONCLUSION: Overall from its high sensitivity to manganese combined with excellent CNR, phase imaging is a promising alternative imaging protocol to assess manganese enhanced MRI at ultra high field. Magn Reson Med 72:1246-1256, 2014. © 2013 Wiley Periodicals, Inc.
Resumo:
Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.
Resumo:
Equivalence classes of normal form games are defined using the geometryof correspondences of standard equilibiurm concepts like correlated, Nash,and robust equilibrium or risk dominance and rationalizability. Resultingequivalence classes are fully characterized and compared across differentequilibrium concepts for 2 x 2 games. It is argued that the procedure canlead to broad and game-theoretically meaningful distinctions of games aswell as to alternative ways of viewing and testing equilibrium concepts.Larger games are also briefly considered.
Resumo:
OBJECTIVE: To determine the means and the reference intervals of the quantitative morphometric parameters of femoroacetabular impingement (FAI) in normal hips with high-resolution computed tomography (CT). METHODS: We prospectively included 94 adult individuals who underwent CT for thoracic, abdominal or urologic pathologies. Patients with a clinical history of hip pathology and/or with osteoarthritis on CT were excluded. We calculated means and 95 % reference intervals for imaging signs of cam-type (alpha angle at 90° and 45° and femoral head-neck offset) and pincer-type impingement (acetabular version angle, lateral centre-edge angle and acetabular index). RESULTS: The 95 % reference interval limits were all far beyond the abnormal thresholds found in the literature for cam-type and to a lesser extent for pincer-type FAI. The upper limits of the reference intervals for the alpha angles (at 90°/45°) were 68°/83° (men) and 69°/84° (women), compared to thresholds from the literature (50°, 55° or 60°). Reference intervals were similar between genders for cam-type parameters, and slightly differed for pincer-type. CONCLUSION: The 95 % reference intervals of morphometric measurements of FAI in asymptomatic hips were beyond the abnormal thresholds, which was especially true for cam-type FAI. Our results suggest the need for redefining the current morphometric parameters used in the diagnosis of FAI. KEY POINTS: ? 95 % reference intervals limits of FAI morphotype were beyond currently defined thresholds. ? Reference intervals of pincer-type morphotype measurements were close to current definitions. ? Reference intervals of cam-type morphotype measurements were far beyond the current definitions. ? Current morphometric definitions of cam-type morphotype should be used with care.
Resumo:
Intratumoural (i.t.) injection of radio-iododeoxyuridine (IdUrd), a thymidine (dThd) analogue, is envisaged for targeted Auger electron- or beta-radiation therapy of glioblastoma. Here, biodistribution of [(125)I]IdUrd was evaluated 5 hr after i.t. injection in subcutaneous human glioblastoma xenografts LN229 after different intravenous (i.v.) pretreatments with fluorodeoxyuridine (FdUrd). FdUrd is known to block de novo dThd synthesis, thus favouring DNA incorporation of radio-IdUrd. Results showed that pretreatment with 2 mg/kg FdUrd i.v. in 2 fractions 0.5 hr and 1 hr before injection of radio-IdUrd resulted in a mean tumour uptake of 19.8% of injected dose (% ID), representing 65.3% ID/g for tumours of approx. 0.35 g. Tumour uptake of radio-IdUrd in non-pretreated mice was only 4.1% ID. Very low uptake was observed in normal nondividing and dividing tissues with a maximum concentration of 2.9% ID/g measured in spleen. Pretreatment with a higher dose of FdUrd of 10 mg/kg prolonged the increased tumour uptake of radio-IdUrd up to 5 hr. A competition experiment was performed in FdUrd pretreated mice using i.t. co-injection of excess dThd that resulted in very low tumour retention of [(125)I]IdUrd. DNA isolation experiments showed that in the mean >95% of tumour (125)I activity was incorporated in DNA. In conclusion, these results show that close to 20% ID of radio-IdUrd injected i.t. was incorporated in tumour DNA after i.v. pretreatment with clinically relevant doses of FdUrd and that this approach may be further exploited for diffusion and therapy studies with Auger electron- and/or beta-radiation-emitting radio-IdUrd.
Resumo:
A highly efficient synthesis of the biologically important fluorescent probe dansyl α-GalCer is presented. Key in our strategy is the incorporation of the fluorescent dansyl group at an early stage in the synthesis to facilitate in the monitoring and purification of intermediates via TLC and flash column chromatography, respectively, and the use of a high yielding α-selective glycosylation reaction between the phytosphingosine lipid and a galactosyl iodide donor. The ability of dansyl α-GalCer to activate iNKT cells and to serve as a fluorescent marker for the uptake of glycolipid by dendritic cells is also presented.
Resumo:
La situación alimentaria del jurel (Trachurus murphyi) en las zonas de Paita, Callao, Pisco e Ilo se comparó en un año normal (1979) y durante El Ni ño 1982/83, analizando los datos del (1) contenido estomacal, (2) del indice alimentario y (3) de la relación longitud/peso, de un total de 2082 individuos. Durante El Niño el cambio más notable en la dieta del jurel fue la ausencia de la anchoveta (Egraulis ringens), la cual representó en 1979 más del 60% del peso estomacal total, el principal ítem alimentario (promedio: Callao, Pisco, Iló). A diferencia de lo constatado en el centro y el sur, la importancia de la anchoveta como recurso alimentario del jurel fue casi nulo en el norte (zona de Paita, 4°L.S 2°L.S) tanto en un año "normal" (1979) , como durante El Niño 1982/83. De otro lado, durante El Niño se incrementó la diversidad alimentaria por la presencia de peces de aguas tropicales como Bregmaceros bathymaster, Abrialopsis sp. y Anchoa sp. y aumentó la importancia de la fracción de macrozooplancton (eufáusidos, Copépodos), alcanzando el 53% del peso estomacal total, comparado con sólo 32%. en 1979 ( promedios:Paita, Callao, Pisco, Ilo) . El valor promedio del indice alimentario durante El Niño es sólo el 36% del valor durante 1979 y la relación longitud / peso muestra para un jurel (macho) de 35 cm una pérdida en el peso promedio de 8%.
Resumo:
Many currently used and candidate vaccine adjuvants are particulate in nature, but their mechanism of action is not well understood. Here, we show that particulate adjuvants, including biodegradable poly(lactide-co-glycolide) (PLG) and polystyrene microparticles, dramatically enhance secretion of interleukin-1beta (IL-1beta) by dendritic cells (DCs). The ability of particulates to promote IL-1beta secretion and caspase 1 activation required particle uptake by DCs and NALP3. Uptake of microparticles induced lysosomal damage, whereas particle-mediated enhancement of IL-1beta secretion required phagosomal acidification and the lysosomal cysteine protease cathepsin B, suggesting a role for lysosomal damage in inflammasome activation. Although the presence of a Toll-like receptor (TLR) agonist was required to induce IL-1beta production in vitro, injection of the adjuvants in the absence of TLR agonists induced IL-1beta production at the injection site, indicating that endogenous factors can synergize with particulates to promote inflammasome activation. The enhancement of antigen-specific antibody production by PLG microparticles was independent of NALP3. However, the ability of PLG microparticles to promote antigen-specific IL-6 production by T cells and the recruitment and activation of a population of CD11b(+)Gr1(-) cells required NALP3. Our data demonstrate that uptake of microparticulate adjuvants by DCs activates the NALP3 inflammasome, and this contributes to their enhancing effects on innate and antigen-specific cellular immunity.
Resumo:
During the development and testing of a radioreceptor assay (RRA) for human IL-1, we have detected and identified the presence of auto-antibodies to IL-1 in normal human plasma (NHP). The RRA is based on the competition between human 125I-labeled rIL-1 alpha and standard or unknown quantities of IL-1 alpha or IL-1 beta for binding to a limited amounts of IL-1 receptor (IL-1R) isolated from the EL4 mouse thymoma cell line. NHP from 20 out of 100 unselected blood donors were found to completely inhibit the binding of 125I-labeled IL-1 alpha to its receptor, suggesting the presence in these NHP samples of either abnormal amounts of IL-1 or of a factor binding to the 125I-labeled IL-1 alpha. Special care was taken to ascertain that the inhibitory factors were antibodies and not soluble IL-1 receptor antagonist. When plasma samples with inhibiting activity were incubated with labeled IL-1 alpha and chromatographed on a Sephadex G200 column, they were found to contain 125I-labeled complexes with an apparent molecular weight of 150-200kD. The IL-1 binding factor could be eliminated from plasma by incubation with protein A-Sepharose, suggesting that it consisted in IgG antibodies directed against IL-1. Furthermore, the antibody nature of the inhibiting factor was confirmed by its binding to purified rIL-1 coupled to Sepharose. Screening of 200 NHP samples by incubation with 100 pg of 125I-labeled IL-1 followed by precipitation with 12% of polyethylene glycol (PEG) confirmed that about 25% of NHP contain detectable IgG antibodies to IL-1 alpha, while only 2% of NHP contain antibodies to IL-1 beta. No correlation between the presence of these anti-IL-1 antibodies and any particular major histocompatibility complex or any pathological conditions was detected. We suggest that all serum samples assayed for IL-1 alpha or IL-1 beta content should be pretested with the PEG precipitation assay described here.
Resumo:
The evolution of boundedly rational rules for playing normal form games is studied within stationary environments ofstochastically changing games. Rules are viewed as algorithms prescribing strategies for the different normal formgames that arise. It is shown that many of the folk results of evolutionary game theory typically obtained witha fixed game and fixed strategies carry over to the present case. The results are also related to recent experimentson rules and games.
Resumo:
INTRODUCTION: Interindividual variations in regional structural properties covary across the brain, thus forming networks that change as a result of aging and accompanying neurological conditions. The alterations of superficial white matter (SWM) in Alzheimer's disease (AD) are of special interest, since they follow the AD-specific pattern characterized by the strongest neurodegeneration of the medial temporal lobe and association cortices. METHODS: Here, we present an SWM network analysis in comparison with SWM topography based on the myelin content quantified with magnetization transfer ratio (MTR) for 39 areas in each hemisphere in 15 AD patients and 15 controls. The networks are represented by graphs, in which nodes correspond to the areas, and edges denote statistical associations between them. RESULTS: In both groups, the networks were characterized by asymmetrically distributed edges (predominantly in the left hemisphere). The AD-related differences were also leftward. The edges lost due to AD tended to connect nodes in the temporal lobe to other lobes or nodes within or between the latter lobes. The newly gained edges were mostly confined to the temporal and paralimbic regions, which manifest demyelination of SWM already in mild AD. CONCLUSION: This pattern suggests that the AD pathological process coordinates SWM demyelination in the temporal and paralimbic regions, but not elsewhere. A comparison of the MTR maps with MTR-based networks shows that although, in general, the changes in network architecture in AD recapitulate the topography of (de)myelination, some aspects of structural covariance (including the interhemispheric asymmetry of networks) have no immediate reflection in the myelination pattern.
Resumo:
BACKGROUND: Psychological stress negatively influences food intake and food choices, thereby contributing to the development of childhood obesity. Physical activity can also moderate eating behavior and influence calorie intake. However, it is unknown if acute physical activity influences food intake and overall energy balance after acute stress exposure in children. We therefore investigated the impact of acute physical activity on overall energy balance (food intake minus energy expenditure), food intake, and choice in the setting of acute social stress in normal weight (NW) and overweight/obese (OW/OB) children as well as the impact of psychological risk factors. METHOD: After receiving written consent from their parents, 26 NW (BMI < 90(th) percentile) and 24 7-to 11-year-old OW (n = 5)/OB (n = 19, BMI ≥ 90(th) percentile) children were randomly allocated using computer-generated numbers (1:1, after stratification for weight status) to acute moderate physical or to sedentary activity for 30 min. Afterwards, all children were exposed to an acute social stressor. Children and their parents completed self-report questionnaires. At the end of the stressor, children were allowed to eat freely from a range of 12 different foods (6 sweet/6 salty; each of low/high caloric density). Energy balance, food intake/choice and obesity-related psychological risk factors were assessed. RESULTS: Lower overall energy balance (p = 0.019) and a decreased choice of low density salty foods (p < 0.001) in NW children compared with OW/OB children was found after acute moderate physical activity but not sedentary activity. Independent of their allocation, OW/OB children ate more high density salty foods (104 kcal (34 to 173), p = 0.004) following stress. They scored higher on impulsive behavior (p = 0.005), restrained eating (p < 0.001) and parental corporal punishment (p = 0.03), but these psychological factors were not related to stress-induced food intake/choice. Positive parenting tended to be related to lower intake of sweet high density food (-132 kcal, -277 to 2, p = 0.054). CONCLUSIONS: In the setting of stress, acute moderate physical activity can address energy balance in children, a benefit which is especially pronounced in the OW/OB. Positive parenting may act as a protective factor preventing stress-induced eating of comfort food. TRIAL REGISTRATION: clinicaltrials.gov NCT01693926 The study was a pilot study of a project funded by the Swiss National Science Foundation (CRSII3_147673).
Resumo:
Sleep disorders commonly involve genetic susceptibility, environmental effects, and interactions between these factors. The heritability of sleep patterns has been shown in studies of monozygotic twins, and sleep electroencephalogram patterns offer a unique genetic fingerprint which may assist in the identification of genes involved in the regulation of sleep. Genetic factors are also thought to play a role in sleep disorders; narcolepsy is a disabling sleep condition and research has revealed the complexity of underlying genetic and environmental influences in the development of this disorder. An understanding of sleep regulation at the molecular level is essential in the identification of new targets for the treatment of sleep disorders, and genome-wide association studies for both normal sleep and sleep disorders may shed new light on the molecular architecture of mechanisms regulating these behaviours.