943 resultados para Nonlinear vibration isolation system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We construct exact solutions for a system of two coupled nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system where the prey per capita growth rate is subject to the Allee effect. Using the G'/G expansion method, we derive exact solutions to this model for two different wave speeds. For each wave velocity we report three different forms of solutions. We also discuss the biological relevance of the solutions obtained. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Torsional vibration predictions and measurements of a marine propulsion system, which has both damping and a highly flexible coupling, are presented in this paper. Using the conventional approach to stress prediction in the shafting system, the numerical predictions and the experimental torsional vibration stress curves in some parts of the shafting system are found to be quite different. The free torsional vibration characteristics and forced torsional vibration response of the system are analyzed in detail to investigate this phenomenon. It is found that the second to fourth natural modes of the shafting system have significant local deformation. This results in large torsional resonant responses in different sections of the system corresponding to different engine speeds. The results show that when there is significant local deformation in the shafting system for different modes, then multi-point measurements should be made, rather than the conventional method of using a single measurement at the free end of the shaft, to obtain the full torsional vibration characteristics of the shafting system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delayed feedback (DF) control is a well-established technique to suppress single frequency vibration of a non-minimum phase system. Modal control is also a well-established technique to control multiple vibration modes of a minimum phase system. In this paper these techniques are combined to simultaneously suppress multiple vibration modes of a non-minimum phase system involving a small time delay. The control approach is called delayed resonant feedback (DRF) where each modal controller consists of a modal filter to extract the target mode signal from the vibration response, and a phase compensator to account for the phase delay of the mode. The methodology is first discussed using a single mode system. A multi-mode system is then studied and experimental results are presented to demonstrate the efficacy of the control approach for two modes of a beam. It is shown that the system behaves as if each mode under control has a dynamic vibration absorber attached to it, even though the actuator and the sensor are not collocated and there is a time delay in the control system. © 2013 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural damage identification is basically a nonlinear phenomenon; however, nonlinear procedures are not used currently in practical applications due to the complexity and difficulty for implementation of such techniques. Therefore, the development of techniques that consider the nonlinear behavior of structures for damage detection is a research of major importance since nonlinear dynamical effects can be erroneously treated as damage in the structure by classical metrics. This paper proposes the discrete-time Volterra series for modeling the nonlinear convolution between the input and output signals in a benchmark nonlinear system. The prediction error of the model in an unknown structural condition is compared with the values of the reference structure in healthy condition for evaluating the method of damage detection. Since the Volterra series separate the response of the system in linear and nonlinear contributions, these indexes are used to show the importance of considering the nonlinear behavior of the structure. The paper concludes pointing out the main advantages and drawbacks of this damage detection methodology. © (2013) Trans Tech Publications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Poincaré plot for heart rate variability analysis is a technique considered geometrical and non-linear, that can be used to assess the dynamics of heart rate variability by a representation of the values of each pair of R-R intervals into a simplified phase space that describes the system's evolution. The aim of the present study was to verify if there is some correlation between SD1, SD2 and SD1/SD2 ratio and heart rate variability nonlinear indexes either in disease or healthy conditions. 114 patients with arterial coronary disease and 65 healthy subjects underwent 30. minute heart rate registration, in supine position and the analyzed indexes were as follows: SD1, SD2, SD1/SD2, Sample Entropy, Lyapunov Exponent, Hurst Exponent, Correlation Dimension, Detrended Fluctuation Analysis, SDNN, RMSSD, LF, HF and LF/HF ratio. Correlation coefficients between SD1, SD2 and SD1/SD2 indexes and the other variables were tested by the Spearman rank correlation test and a regression analysis. We verified high correlation between SD1/SD2 index and HE and DFA (α1) in both groups, suggesting that this ratio can be used as a surrogate variable. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a strategy to control nonlinear responses of aeroelastic systems with control surface freeplay. The proposed methodology is developed for the three degrees of freedom typical section airfoil considering aerodynamic forces from Theodorsen's theory. The mathematical model is written in the state space representation using rational function approximation to write the aerodynamic forces in time domain. The control system is designed using the fuzzy Takagi-Sugeno modeling to compute a feedback control gain. It useds Lyapunov's stability function and linear matrix inequalities (LMIs) to solve a convex optimization problem. Time simulations with different initial conditions are performed using a modified Runge-Kutta algorithm to compare the system with and without control forces. It is shown that this approach can compute linear control gain able to stabilize aeroelastic systems with discontinuous nonlinearities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The aim of the present study was to evaluate the effect of pursed-lip breathing (PLB) on cardiac autonomic modulation in individuals with chronic obstructive pulmonary disease (COPD) while at rest. Methods: Thirty-two individuals were allocated to one of two groups: COPD (n = 17; 67.29 +/- 6.87 years of age) and control (n = 15; 63.2 +/- 7.96 years of age). The groups were submitted to a two-stage experimental protocol. The first stage consisted of the characterization of the sample and spirometry. The second stage comprised the analysis of cardiac autonomic modulation through the recording of R-R intervals. This analysis was performed using both nonlinear and linear heart rate variability (HRV). In the statistical analysis, the level of significance was set to 5% (p = 0.05). Results: PLB promoted significant increases in the SD1, SD2, RMSSD and LF (ms(2)) indices as well as an increase in alpha(1) and a reduction in alpha(2) in the COPD group. A greater dispersion of points on the Poincare plots was also observed. The magnitude of the changes produced by PLB differed between groups. Conclusion: PLB led to a loss of fractal correlation properties of heart rate in the direction of linearity in patients with COPD as well as an increase in vagal activity and impact on the spectral analysis. The difference in the magnitude of the changes produced by PLB between groups may be related to the presence of the disease and alterations in the respiration rate.