868 resultados para Negative Binomial Regression Model (NBRM)
Resumo:
Atherosclerosis plaque rupture has been considered to be a mechanical failure of the thin fibrous cap, resulted from extreme plaque stress. Plaque stress was affected by many factors from morphological features to biological abnormalities. In this study, geometrical factors (curvedness, fibrous cap thickness) were studied on assessing plaque vulnerability in comparison with stress analysis results obtained by fluid structure interaction from 20 human carotid atherosclerosis plaques. The results show that plaque surface curvedness could contribute to extreme stress level, especially in plaque shoulder region. General plaque stress distribution could be predicted by fibrous cap thickness and curvedness with multi-regression model. With more features included in the regression model, plaque stress could be easily calculated and used to assess plaque vulnerability.
Resumo:
The export of sediments from coastal catchments can have detrimental impacts on estuaries and near shore reef ecosystems such as the Great Barrier Reef. Catchment management approaches aimed at reducing sediment loads require monitoring to evaluate their effectiveness in reducing loads over time. However, load estimation is not a trivial task due to the complex behaviour of constituents in natural streams, the variability of water flows and often a limited amount of data. Regression is commonly used for load estimation and provides a fundamental tool for trend estimation by standardising the other time specific covariates such as flow. This study investigates whether load estimates and resultant power to detect trends can be enhanced by (i) modelling the error structure so that temporal correlation can be better quantified, (ii) making use of predictive variables, and (iii) by identifying an efficient and feasible sampling strategy that may be used to reduce sampling error. To achieve this, we propose a new regression model that includes an innovative compounding errors model structure and uses two additional predictive variables (average discounted flow and turbidity). By combining this modelling approach with a new, regularly optimised, sampling strategy, which adds uniformity to the event sampling strategy, the predictive power was increased to 90%. Using the enhanced regression model proposed here, it was possible to detect a trend of 20% over 20 years. This result is in stark contrast to previous conclusions presented in the literature. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Submarine groundwater discharge (SGD) is an integral part of the hydrological cycle and represents an important aspect of land-ocean interactions. We used a numerical model to simulate flow and salt transport in a nearshore groundwater aquifer under varying wave conditions based on yearlong random wave data sets, including storm surge events. The results showed significant flow asymmetry with rapid response of influxes and retarded response of effluxes across the seabed to the irregular wave conditions. While a storm surge immediately intensified seawater influx to the aquifer, the subsequent return of intruded seawater to the sea, as part of an increased SGD, was gradual. Using functional data analysis, we revealed and quantified retarded, cumulative effects of past wave conditions on SGD including the fresh groundwater and recirculating seawater discharge components. The retardation was characterized well by a gamma distribution function regardless of wave conditions. The relationships between discharge rates and wave parameters were quantifiable by a regression model in a functional form independent of the actual irregular wave conditions. This statistical model provides a useful method for analyzing and predicting SGD from nearshore unconfined aquifers affected by random waves
Resumo:
The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.
Resumo:
Consider a general regression model with an arbitrary and unknown link function and a stochastic selection variable that determines whether the outcome variable is observable or missing. The paper proposes U-statistics that are based on kernel functions as estimators for the directions of the parameter vectors in the link function and the selection equation, and shows that these estimators are consistent and asymptotically normal.
Resumo:
Data from surveys of recreational anglers fishing on three estuaries in eastern Australia reveal highly skewed distributions of catches with many zeros. Such data may be analysed using a two component approach involving a binary (zero/non-zero catch) response and the non-zero catches. A truncated regression model was effective in analysing the non-zero catches. Covariates were incorporated in the modelling, and their critical assessment has led to improved measures of fishing effort for this recreational fishery.
Resumo:
The widespread and increasing resistance of internal parasites to anthelmintic control is a serious problem for the Australian sheep and wool industry. As part of control programmes, laboratories use the Faecal Egg Count Reduction Test (FECRT) to determine resistance to anthelmintics. It is important to have confidence in the measure of resistance, not only for the producer planning a drenching programme but also for companies investigating the efficacy of their products. The determination of resistance and corresponding confidence limits as given in anthelmintic efficacy guidelines of the Standing Committee on Agriculture (SCA) is based on a number of assumptions. This study evaluated the appropriateness of these assumptions for typical data and compared the effectiveness of the standard FECRT procedure with the effectiveness of alternative procedures. Several sets of historical experimental data from sheep and goats were analysed to determine that a negative binomial distribution was a more appropriate distribution to describe pre-treatment helminth egg counts in faeces than a normal distribution. Simulated egg counts for control animals were generated stochastically from negative binomial distributions and those for treated animals from negative binomial and binomial distributions. Three methods for determining resistance when percent reduction is based on arithmetic means were applied. The first was that advocated in the SCA guidelines, the second similar to the first but basing the variance estimates on negative binomial distributions, and the third using Wadley’s method with the distribution of the response variate assumed negative binomial and a logit link transformation. These were also compared with a fourth method recommended by the International Co-operation on Harmonisation of Technical Requirements for Registration of Veterinary Medicinal Products (VICH) programme, in which percent reduction is based on the geometric means. A wide selection of parameters was investigated and for each set 1000 simulations run. Percent reduction and confidence limits were then calculated for the methods, together with the number of times in each set of 1000 simulations the theoretical percent reduction fell within the estimated confidence limits and the number of times resistance would have been said to occur. These simulations provide the basis for setting conditions under which the methods could be recommended. The authors show that given the distribution of helminth egg counts found in Queensland flocks, the method based on arithmetic not geometric means should be used and suggest that resistance be redefined as occurring when the upper level of percent reduction is less than 95%. At least ten animals per group are required in most circumstances, though even 20 may be insufficient where effectiveness of the product is close to the cut off point for defining resistance.
Resumo:
- Objective We sought to assess the effect of long-term exposure to ambient air pollution on the prevalence of self-reported health outcomes in Australian women. - Design Cross-sectional study - Setting and participants The geocoded residential addresses of 26 991 women across 3 age cohorts in the Australian Longitudinal Study on Women's Health between 2006 and 2011 were linked to nitrogen dioxide (NO2) exposure estimates from a land-use regression model. Annual average NO2 concentrations and residential proximity to roads were used as proxies of exposure to ambient air pollution. - Outcome measures Self-reported disease presence for diabetes mellitus, heart disease, hypertension, stroke, asthma, chronic obstructive pulmonary disease and self-reported symptoms of allergies, breathing difficulties, chest pain and palpitations. - Methods Disease prevalence was modelled by population-averaged Poisson regression models estimated by generalised estimating equations. Associations between symptoms and ambient air pollution were modelled by multilevel mixed logistic regression. Spatial clustering was accounted for at the postcode level. - Results No associations were observed between any of the outcome and exposure variables considered at the 1% significance level after adjusting for known risk factors and confounders. - Conclusions Long-term exposure to ambient air pollution was not associated with self-reported disease prevalence in Australian women. The observed results may have been due to exposure and outcome misclassification, lack of power to detect weak associations or an actual absence of associations with self-reported outcomes at the relatively low annual average air pollution exposure levels across Australia.
Resumo:
Criminological theories of cross-national studies of homicide have underestimated the effects of quality governance of liberal democracy and region. Data sets from several sources are combined and a comprehensive model of homicide is proposed. Results of the spatial regression model, which controls for the effect of spatial autocorrelation, show that quality governance, human development, economic inequality, and ethnic heterogeneity are statistically significant in predicting homicide. In addition, regions of Latin America and non-Muslim Sub-Saharan Africa have significantly higher rates of homicides ceteris paribus while the effects of East Asian countries and Islamic societies are not statistically significant. These findings are consistent with the expectation of the new modernization and regional theories.
Resumo:
The stimulation technique has gained much importance in the performance studies of Concurrency Control (CC) algorithms for distributed database systems. However, details regarding the simulation methodology and implementation are seldom mentioned in the literature. One objective of this paper is to elaborate the simulation methodology using SIMULA. Detailed studies have been carried out on a centralised CC algorithm and its modified version. The results compare well with a previously reported study on these algorithms. Here, additional results concerning the update intensiveness of transactions and the degree of conflict are obtained. The degree of conflict is quantitatively measured and it is seen to be a useful performance index. Regression analysis has been carried out on the results, and an optimisation study using the regression model has been performed to minimise the response time. Such a study may prove useful for the design of distributed database systems.
Resumo:
Objectives of this study were to determine secular trends of diabetes prevalence in China and develop simple risk assessment algorithms for screening individuals with high-risk for diabetes or with undiagnosed diabetes in Chinese and Indian adults. Two consecutive population based surveys in Chinese and a prospective study in Mauritian Indians were involved in this study. The Chinese surveys were conducted in randomly selected populations aged 20-74 years in 2001-2002 (n=14 592) and 35-74 years in 2006 (n=4416). A two-step screening strategy using fasting capillary plasma glucose (FCG) as first-line screening test followed by standard 2-hour 75g oral glucose tolerance tests (OGTTs) was applied to 12 436 individuals in 2001, while OGTTs were administrated to all participants together with FCG in 2006 and to 2156 subjects in 2002. In Mauritius, two consecutive population based surveys were conducted in Mauritian Indians aged 20-65 years in 1987 and 1992; 3094 Indians (1141 men), who were not diagnosed as diabetes at baseline, were reexamined with OGTTs in 1992 and/or 1998. Diabetes and pre-diabetes was defined following 2006 World Health Organization/ International Diabetes Federation Criteria. Age-standardized, as well as age- and sex-specific, prevalence of diabetes and pre-diabetes in adult Chinese was significantly increased from 12.2% and 15.4% in 2001 to 16.0% and 21.2% in 2006, respectively. A simple Chinese diabetes risk score was developed based on the data of Chinese survey 2001-2002 and validated in the population of survey 2006. The risk scores based on β coefficients derived from the final Logistic regression model ranged from 3 – 32. When the score was applied to the population of survey 2006, the area under operating characteristic curve (AUC) of the score for screening undiagnosed diabetes was 0.67 (95% CI, 0.65-0.70), which was lower than the AUC of FCG (0.76 [0.74-0.79]), but similar to that of HbA1c (0.68 [0.65-0.71]). At a cut-off point of 14, the sensitivity and specificity of the risk score in screening undiagnosed diabetes was 0.84 (0.81-0.88) and 0.40 (0.38-0.41). In Mauritian Indian, body mass index (BMI), waist girth, family history of diabetes (FH), and glucose was confirmed to be independent risk predictors for developing diabetes. Predicted probabilities for developing diabetes derived from a simple Cox regression model fitted with sex, FH, BMI and waist girth ranged from 0.05 to 0.64 in men and 0.03 to 0.49 in women. To predict the onset of diabetes, the AUC of the predicted probabilities was 0.62 (95% CI, 0.56-0.68) in men and 0.64(0.59-0.69) in women. At a cut-off point of 0.12, the sensitivity and specificity was 0.72(0.71-0.74) and 0.47(0.45-0.49) in men; and 0.77(0.75-0.78) and 0.50(0.48-0.52) in women, respectively. In conclusion, there was a rapid increase in prevalence of diabetes in Chinese adults from 2001 to 2006. The simple risk assessment algorithms based on age, obesity and family history of diabetes showed a moderate discrimination of diabetes from non-diabetes, which may be used as first line screening tool for diabetes and pre-diabetes, and for health promotion purpose in Chinese and Indians.
Resumo:
Introduction: Extreme heat events (both heat waves and extremely hot days) are increasing in frequency and duration globally and cause more deaths in Australia than any other extreme weather event. Numerous studies have demonstrated a link between extreme heat events and an increased risk of morbidity and death. In this study, the researchers sought to identify if extreme heat events in the Tasmanian population were associated with any changes in emergency department admissions to the Royal Hobart Hospital (RHH) for the period 2003-2010. Methods: Non-identifiable RHH emergency department data and climate data from the Australian Bureau of Meteorology were obtained for the period 2003-2010. Statistical analyses were conducted using the computer statistical computer software ‘R’ with a distributed lag non-linear model (DLNM) package used to fit a quassi-Poisson generalised linear regression model. Results: This study showed that RR of admission to RHH during 2003-2010 was significant over temperatures of 24 C with a lag effect lasting 12 days and main effect noted one day after the extreme heat event. Discussion: This study demonstrated that extreme heat events have a significant impact on public hospital admissions. Two limitations were identified: admissions data rather than presentations data were used and further analysis could be done to compare types of admissions and presentations between heat and non-heat events. Conclusion: With the impacts of climate change already being felt in Australia, public health organisations in Tasmania and the rest of Australia need to implement adaptation strategies to enhance resilience to protect the public from the adverse health effects of heat events and climate change.
Resumo:
In the past decade, the Finnish agricultural sector has undergone rapid structural changes. The number of farms has decreased and the average farm size has increased when the number of farms transferred to new entrants has decreased. Part of the structural change in agriculture is manifested in early retirement programmes. In studying farmers exit behaviour in different countries, institutional differences, incentive programmes and constraints are found to matter. In Finland, farmers early retirement programmes were first introduced in 1974 and, during the last ten years, they have been carried out within the European Union framework for these programmes. The early retirement benefits are farmer specific and de-pend on the level of pension insurance the farmer has paid over his active farming years. In order to predict the future development of the agricultural sector, farmers have been frequently asked about their future plans and their plans for succession. However, the plans the farmers made for succession have been found to be time inconsistent. This study estimates the value of farmers stated succession plans in predicting revealed succession decisions. A stated succession plan exists when a farmer answers in a survey questionnaire that the farm is going to be transferred to a new entrant within a five-year period. The succession is revealed when the farm is transferred to a suc-cessor. Stated and revealed behaviour was estimated as a recursive Binomial Probit Model, which accounts for the censoring of the decision variables and controls for a potential correlation between the two equations. The results suggest that the succession plans, as stated by elderly farmers in the questionnaires, do not provide information that is significant and valuable in predicting true, com-pleted successions. Therefore, farmer exit should be analysed based on observed behaviour rather than on stated plans and intentions. As farm retirement plays a crucial role in determining the characteristics of structural change in agriculture, it is important to establish the factors which determine an exit from farming among eld-erly farmers and how off-farm income and income losses affect their exit choices. In this study, the observed choice of pension scheme by elderly farmers was analysed by a bivariate probit model. Despite some variations in significance and the effects of each factor, the ages of the farmer and spouse, the age and number of potential successors, farm size, income loss when retiring and the location of the farm together with the production line were found to be the most important determi-nants of early retirement and the transfer or closure of farms. Recently, the labour status of the spouse has been found to contribute significantly to individual retirement decisions. In this study, the effect of spousal retirement and economic incentives related to the timing of a farming couple s early retirement decision were analysed with a duration model. The results suggest that an expected pension in particular advances farm transfers. It was found that on farms operated by a couple, both early retirement and farm succession took place more often than on farms operated by a single person. However, the existence of a spouse delayed the timing of early retirement. Farming couples were found to co-ordinate their early retirement decisions when they both exit through agricultural retirement programmes, but such a co-ordination did not exist when one of the spouses retired under other pension schemes. Besides changes in the agricultural structure, the share and amount of off-farm income of a farm family s total income has also increased. In the study, the effect of off-farm income on farmers retirement decisions, in addition to other financial factors, was analysed. The unknown parameters were first estimated by a switching-type multivariate probit model and then by the simulated maxi-mum likelihood (SML) method, controlling for farmer specific fixed effects and serial correlation of the errors. The results suggest that elderly farmers off-farm income is a significant determinant in a farmer s choice to exit and close down the farm. However, off-farm income only has a short term effect on structural changes in agriculture since it does not significantly contribute to the timing of farm successions.
Resumo:
This research discusses decoupling CAP (Common Agricultural Policy) support and impacts which may occur on grain cultivation area and supply of beef and pork in Finland. The study presents the definitions and studies on decoupled agricultural subsidies, the development of supply of grain, beef and pork in Finland and changes in leading factors affecting supply between 1970 and 2005. Decoupling agricultural subsidies means that the linkage between subsidies and production levels is disconnected; subsidies do not affect the amount produced. The hypothesis is that decoupling will decrease the amounts produced in agriculture substantially. In the supply research, the econometric models which represent supply of agricultural products are estimated based on the data of prices and amounts produced. With estimated supply models, the impacts of changes in prices and public policies, can be forecasted according to supply of agricultural products. In this study, three regression models describing combined cultivation areas of rye, wheat, oats and barley, and the supply of beef and pork are estimated. Grain cultivation area and supply of beef are estimated based on data from 1970 to 2005 and supply of pork on data from 1995 to 2005. The dependencies in the model are postulated to be linear. The explanatory variables in the grain model were average return per hectare, agricultural subsidies, grain cultivation area in the previous year and the cost of fertilization. The explanatory variables in the beef model were the total return from markets and subsidies and the amount of beef production in the previous year. In the pork model the explanatory variables were the total return, the price of piglet, investment subsidies, trend of increasing productivity and the dummy variable of the last quarter of the year. The R-squared of model of grain cultivation area was 0,81, the model of beef supply 0,77 and the model of pork supply 0,82. Development of grain cultivation area and supply of beef and pork was estimated for 2006 - 2013 with this regression model. In the basic scenario, development of explanatory variables in 2006 - 2013 was postulated to be the same as they used to be in average in 1995 - 2005. After the basic scenario the impacts of decoupling CAP subsidies and domestic subsidies on cultivation area and supply were simulated. According to the results of the decoupling CAP subsidies scenario, grain cultivation area decreases from 1,12 million hectares in 2005 to 1,0 million hectares in 2013 and supply of beef from 88,8 million kilos in 2005 to 67,7 million kilos in 2013. Decoupling domestic and investment subsidies will decrease the supply of pork from 194 million kilos in 2005 to 187 million kilos in 2006. By 2013 the supply of pork grows into 203 million kilos.
Resumo:
Whether a statistician wants to complement a probability model for observed data with a prior distribution and carry out fully probabilistic inference, or base the inference only on the likelihood function, may be a fundamental question in theory, but in practice it may well be of less importance if the likelihood contains much more information than the prior. Maximum likelihood inference can be justified as a Gaussian approximation at the posterior mode, using flat priors. However, in situations where parametric assumptions in standard statistical models would be too rigid, more flexible model formulation, combined with fully probabilistic inference, can be achieved using hierarchical Bayesian parametrization. This work includes five articles, all of which apply probability modeling under various problems involving incomplete observation. Three of the papers apply maximum likelihood estimation and two of them hierarchical Bayesian modeling. Because maximum likelihood may be presented as a special case of Bayesian inference, but not the other way round, in the introductory part of this work we present a framework for probability-based inference using only Bayesian concepts. We also re-derive some results presented in the original articles using the toolbox equipped herein, to show that they are also justifiable under this more general framework. Here the assumption of exchangeability and de Finetti's representation theorem are applied repeatedly for justifying the use of standard parametric probability models with conditionally independent likelihood contributions. It is argued that this same reasoning can be applied also under sampling from a finite population. The main emphasis here is in probability-based inference under incomplete observation due to study design. This is illustrated using a generic two-phase cohort sampling design as an example. The alternative approaches presented for analysis of such a design are full likelihood, which utilizes all observed information, and conditional likelihood, which is restricted to a completely observed set, conditioning on the rule that generated that set. Conditional likelihood inference is also applied for a joint analysis of prevalence and incidence data, a situation subject to both left censoring and left truncation. Other topics covered are model uncertainty and causal inference using posterior predictive distributions. We formulate a non-parametric monotonic regression model for one or more covariates and a Bayesian estimation procedure, and apply the model in the context of optimal sequential treatment regimes, demonstrating that inference based on posterior predictive distributions is feasible also in this case.