1000 resultados para NANOPARTICLES
Resumo:
Efficient green emission from ZnMgS:Mn2+ nanoparticles prepared by co-doping Mg2+ and Mn2+ ions into ZnS lattices has been observed. The synthesis is carried out in aqueous solution, followed by a post-annealing process, thus showing the features of less complexity, low cost, and easy incorporation of dopants. In comparison with the emission of ZnS:Mn2+ nanoparticles, which is located generally around 590 nm, the photoluminescence of ZnMgS:Mn2+ nanoparticles is blue-shifted by 14 nm in wavelength, leading to the enhanced green emission. The X-ray diffraction, electron spin resonance, and pressure dependent photoluminescence measurements suggest that the change of the crystal field caused by Mg2+ ionic doping and the lower symmetry in the nanoparticles may account for the blue-shift of the photoluminescence. The ZnMgS:Mn2+ nanoparticles with 1% Mn2+ doping exhibit the strongest luminescence, which could potentially meet the requirements for the construction of green light emitting diodes.
Resumo:
ZnS:Mn nanoparticles of the cubic zinc blende structure with the average sizes of about 3 nm were synthesized using a coprecipitation method and their optical and magnetic properties were investigated. Two emission bands were observed in doped nanoparitcles and attributed to the defect-related emission of ZnS and the Mn2+ emission, respectively. With the increase of Mn2+ concentration, the luminescence intensities of these two emission bands increased and the ZnS emission band shifted to lower energy. Based on the luminescence excitation spectra of Mn2+, the 3d(5) level structure of Mn2+ in ZnS nanoparticles is similar to that in bulk ZnS:Mn, regardless of Mn2+ concentration. Magnetic measurements showed that all the samples exhibit paramagnetic behavior and no antiferromagnetic interaction between Mn2+ ions exists, which are in contrast to bulk ZnS:Mn. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The PL spectra for the 10, 4. 5, 3. 5, 3, 1 nm sized ZnS:Mn2+ nanoparticles and corresponding bulk material under different pressures were investigated. The orange emission band originated from the T-4(1)-(6)A(1) transition of Mn2+ ions showed obvious red shift with the increasing of pressures. The pressure coefficients of Mn-related emissions measured from bulk, 10, 4. 5, 3.5 and 3 nm samples are -29.4 +/- 0.3, -30.1 +/- 0.3, -33.3 +/- 0.6, -34.6 +/- 0.8 and -39 +/- 1 meV/GPa, respectively. The absolute value of the pressure coefficient increases with the decrease of the size of particles. The size dependence of crystal field strength Dq and Racah parameter B accounts for the size behavior of the Mn-related emission in ZnS:Mn nanoparticles. The pressure behavior of Mn-related emission in the 1 nm sized sample is somewhat different from that of other nanoparticles. It may be due to smaller size of 1 nm sample and the special surface condition since ZnS nanoparticles are formed in the cavities of ziolite-Y for the 1 nm sample.
Resumo:
The pressure dependence of the photoluminescence from ZnS : Mn2+, ZnS : Cu2+, and ZnS : Eu2+ nanoparticles were investigated under hydrostatic pressure up to 6 GPa at room temperature. Both the orange emission from the T-4(1) - (6)A(1) transition of Mn2+ ions and the blue emission from the DA pair transition in the ZnS host were observed in the Mn-doped samples. The measured pressure coefficients are -34.3(8) meV/GPa for the Mn-related emission and -3(3) meV/GPa for the DA band, respectively. The emission corresponding to the 4f(6)5d(1) - 4f(7) transition of Eu2+ ions and the emission related to the transition from the conduction band of ZnS to the t(2) level of Cu2+ ions were observed in the Eu- and Cu-doped samples, respectively. The pressure coefficient of the Eu-related emission was found to be 24.1(5) meV/GPa, while that of the Cu-related emission is 63.2(9) meV/GPa. The size dependence of the pressure coefficients for the Mn-related emission was also investigated. The Mn emission shifts to lower energies with increasing pressure and the shift rate (the absolute value of the pressure coefficient) is larger in the ZnS : Mn2+ nanoparticles than in bulk. Moreover, the absolute pressure coefficient increases with the decrease of the particle size. The pressure coefficients calculated based on the crystal field theory are in agreement with the experimental results. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Structural and magnetic characteristics of Fe3-xSnxO4 (x < 0.3) nanoparticles synthesized using the precipitation exchange method have been investigated by X-ray diffraction, transmission electron microscope, Mossbauer spectra, X-ray photoelectron spectroscopy and magnetization measurement. The mean particle dimension decreases from 8 to 6 nm, the lattice parameters enlarge, the saturation magnetization decreases, as well as the magnetization and the coercive field increase, with increasing tin-content. The paramagnetic property of the specimens indicates that the replacement of Fe3+ by Sn4+ on the octahedral sites of Fe3O4 causes a progressive lowering of the Curie temperature and the Curie temperatures of the materials are all lower than that of crystallite tin-doped magnetite. This striking debasing is due to the lessening of the grain size. This is the smallest size reported thus far for paramagnetic tin-doped magnetite particles. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The room-temperature photoluminescence (PL) of copper doped zinc sulfide (ZnS:Cu) nanoparticles were investigated. These ZnS:Cu nanoparticles were synthesized by a facile wet chemical method, with the copper concentration varying from 0 to 2 mol%. By Gaussian fitting, the PL spectrum of the undoped ZnS nanoparticles was deconvoluted into two blue luminescence peaks (centered at 411 nm and 455 nm, respectively), which both can be attributed to the recombination of the defect sates of ZnS. But for the doped samples, a third peak at about 500 nm was also identified. This green luminescence originates from the recombination between the shallow donor level (sulfur vacancy) and the t(2) level of Cu2+. With the increase of the CU2+ concentration, the green emission peak is systematically shifted to longer wavelength. In addition, it was found that the overall photoluminescence intensity is decreased at the Cu2+ concentration of 2%. The concentration quenching of the luminescence may be caused by the formation of CuS compound. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
ZnO nanoparticles were synthesized in ethanolic solution using a sol-gel method. The structural and optical properties were investigated by X-ray diffraction, transmission electron microscopy, UV absorption, and photoluminescence. After annealing at 200 degrees C, the particle size is increased and the peak of defect luminescence in the visible region is changed. A yellow emission was observed in the as-prepared sample and a green emission in the annealed sample. The change of the visible emission is related to oxygen defects. Annealing in the absence of oxygen would increase oxygen vacancies. (c) 2006 Elsevier Ltd. All rights reserved.
Synthesis and temperature-dependent near-band-edge emission of chain-like Mg-doped ZnO nanoparticles
Resumo:
Chain-like Mg-doped ZnO nanoparticles were prepared using a wet chemical method combined with subsequent heat treatment. The blueshifted near-band-edge emission of the doped ZnO sample with respect to the undoped one was investigated by temperature-dependent photoluminescence. Based on the energy shift of the free-exciton transition, a band gap enlargement of similar to 83 meV was estimated, which seems to result in the equivalent shift of the bound-exciton transition. At 50 K, the transformation from the donor-acceptor-pair to free-to-acceptor emissions was observed for both the undoped and doped samples. The results show that Mg doping leads to the decrease of the acceptor binding energy. (c) 2006 American Institute of Physics.
Resumo:
Silicon nanoparticles have been fabricated in both oxide and nitride matrices by using plasma-enhanced chemical vapour deposition, for which a low substrate temperature down to 50 degreesC turns out to be most favourable. High-rate deposition onto such a cold substrate results in the formation of nanoscaled silicon particles, which have revealed an amorphous nature under transmission electron microscope (TEM) examination. The particle size can be readily controlled below 3.0 nm, and the number density amounts to over 10(12) cm(-2), as calculated from the TEM micrographs. Strong photoluminescence in the whole visible light range has been observed in the as-deposited Si-in-SiOx and Si-in-SiNx thin films. Without altering the size or structure of the particles, a post-annealing at 300 degreesC for 2 min raised the photoluminescence efficiency to a level comparable to the achievements with nanocrystalline Si-in-SiO2 samples prepared at high temperature. This low-temperature procedure for fabricating light-emitting silicon structures opens up the possibility of manufacturing integrated silicon-based optoelectronics.
Resumo:
The pressure behavior of Mn2+ emission in the 10-, 4.5-, 3.5-, 3-, and 1-nm-sized ZnS:Mn2+ nanoparticles is investigated. The emission shifts to lower energies with increasing pressure, and the shift rate (the absolute value of the pressure coefficient) is larger in the ZnS:Mn2+ nanoparticles than in bulk. The pressure coefficient increases with the decrease in particle size with the 1-nm-sized particles as an exception. Pressure coefficient calculations based on the crystal field theory are in agreement with the experimental results. The pressure dependence of the emission intensity is also size dependent. For nanoparticles 1 and 3 nm in size, the luminescence intensity of Mn2+ decreases dramatically with increasing pressure, while, for bulk and particles with average sizes of 3.5, 4.5, and 10 nm, the luminescence intensity of Mn2+ is virtually unchanged at different pressures. The bandwidth increases faster with increasing pressure for smaller particles. This is perhaps due to the fact that there are more Mn2+ ions at the near-surface sites and because the phonon frequency is greater for smaller particles. These new phenomena provide some insight into the luminescence behavior of Mn2+ in ZnS:Mn2+ nanoparticles.
Resumo:
The temperature dependences of the orange and blue emissions in 10, 4.5, and 3 nm ZnS:Mn nanoparticles were investigated. The orange emission is from the T-4(1)-(6)A(1) transition of Mn2+ ions and the blue emission is related to the donor-acceptor recombination in the ZnS host. With increasing temperature, the blue emission has a red-shift. On the other hand, the peak energy of the orange emission is only weakly dependent on temperature. The luminescence intensity of the orange emission decreases rapidly from 110 to 300 K for the 10 nm sample but increases obviously for the 3 nm sample, whereas the emission intensity is nearly, independent of temperature for the 4.5 nm sample. A thermally activated carrier-transfer model has been proposed to explain the observed abnormal temperature behaviour of the orange emission in ZnS:Mn nanoparticles.
Resumo:
Temperature and pressure dependent measurements have been performed on 3.5 nm ZnS:Mn2+ nanoparticles. As temperature increases, the donor-acceptor (DA) emission of ZnS:Mn2+ nanoparticles at 440 nm shifts to longer wavelengths while the Mn2+ emission (T-4(1)-(6)A(1)) shifts to shorter wavelengths. Both the DA and Mn2+ emission intensities decrease with temperature with the intensity decrease of the DA emission being much more pronounced. The intensity decreases are fit well with the theory of thermal quenching. As pressure increases, the Mn2+ emission shifts to longer wavelengths while the DA emission wavelength remains almost constant. The pressure coefficient of the DA emission in ZnS:Mn2+ nanoparticles is approximately -3.2 meV/GPa, which is significantly smaller than that measured for bulk materials. The relatively weak pressure dependence of the DA emission is attributed to the increase of the binding energies and the localization of the defect wave functions in nanoparticles. The pressure coefficient of Mn2+ emission in ZnS:Mn2+ nanoparticles is roughly -34.3 meV/GPa, consistent with crystal field theory. The results indicate that the energy transfer from the ZnS host to Mn2+ ions is mainly from the recombination of carriers localized at Mn2+ ions. (C) 2002 American Institute of Physics.
Resumo:
Terbium ions were successfully incorporated in nano-sized zinc oxide particles with a doping concentration up to 3% by using a wet chemical route. Four narrow emission peaks of Tb3+ ions and a broad emission band of the surface states on ZnO nano-hosts were observed for all Tb-doped nanoparticles. Relaxation of carriers from excited states of ZnO hosts to rare earth (RE) dopants is disclosed by the fact that the emission intensity of Tb3+ centers increases with increased Tb content at the expense of the emission from surface defect states in ZnO matrix. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Ag/Si nanocomposite films were prepared by the radio-frequency magnetron cosputtering method. The fine structure of the plasmon resonance absorption peak was found in film samples. X-ray photoelectron spectroscopy analysis indicated that the samples were composed of a two-layer structure, which accounted for the structure of the optical absorption spectra. The peak located near 445 nm is the plasmon resonance absorption peak of Ag nanoparticles embedded in a partially oxidized Si matrix. Its intensity decreases with decreasing film thickness and disappears in a very thin sample. The peak located near 380 nm originates from the plasmon resonance absorption of the thoroughly oxidized surface layer of the sample. Its intensity does not change with increasing thickness, but it cannot be observed in the very thick sample. (C) 2001 American Institute of Physics.
Resumo:
Terbium-doped zinc oxide nanoparticles have been prepared by hydrolyzing zinc acetate and terbium acetate. Nanoparticle-matrix-facilitated photoluminescence which is related to Tb3+ ions has been observed for ZnO:Tb nanoparticles. The dependence of emission intensity on doping concentration of Tb3+ ions has been investigated. An energy transfer from excited states of ZnO hosts to dopants is disclosed by the fact that the emission intensity of Tb3+ centers increases with increasing Tb content at the expense of emission from defect states in ZnO matrix.