943 resultados para Myocardial Ischemia
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In renovascular hypertensive rats, low doses of angiotensin converting enzyme (ACE) inhibitors have been found to prevent myocardial hypertrophy independent of blood pressure level. This finding would suggest humoral rather than mechanical control of myocyte growth. The aim of this study was to examine the effect of nonantihypertensive doses of ACE inhibitor on myocardial hypertrophy and necrosis in hypertensive rats. Renovascular hypertension (RHT) was induced in four-week-old Wistar rats. Twenty-eight animals were treated for four weeks with three doses of ramipril (0.01, 0.1 or 1. 0 mg/kg/day, which are unable to lower blood pressure. Fourteen animals were not treated (RHT group). A sham operated, age/sex-matched group was used as control (n = 10). Myocardial histology was analysed in 3 microm thick sections of the ventricle stained with either haematoxylin-eosin, reticulin silver stain or Masson's trichrome. There was a significant correlation between systolic blood pressure and left ventricular to body weight ratio in both sets of animals: untreated plus controls and ramipril-treated rats. ACE inhibition prevented myocyte and perivascular necrosis and fibrosis in a dose-dependent manner. We conclude that myocardial hypertrophy in rats with renovascular hypertension is directly related to arterial pressure, and that this relationship is not affected by nonantihypertensive doses of ACE inhibitor. Myocardial necrosis/fibrosis and coronary artery damage induced by angiotensin II are prevented by ACE inhibitor in a dose-dependent manner, despite the presence of arterial hypertension.
Resumo:
The aging spontaneously hypertensive rat (SHR) is a model in which the transition from chronic stable left ventricular hypertrophy to overt heart failure can be observed. Although the mechanisms for impaired function in hypertrophied and failing cardiac muscle from the SHR have been studied, none accounts fully for the myocardial contractile abnormalities. The cardiac cytoskeleton has been implicated as a possible cause for myocardial dysfunction. If an increase in microtubules contributes to dysfunction, then myocardial microtubule disruption by colchicine should promote an improvement in cardiac performance. We studied the active and passive properties of isolated left ventricular papillary muscles from 18- to 24-month-old SHR with evidence of heart failure (SHR-F, n=6), age-matched SHR without heart failure (SHR-NF, n=6), and age-matched normotensive Wistar-Kyoto rats (WKY, n=5). Mechanical parameters were analyzed before and up to 90 minutes after the addition of colchicine (10(-5), 10(-4), and 10(-3) mol/L). In the baseline state, active tension (AT) developed by papillary muscles from the WKY group was greater than for SHR-NF and SHR-F groups (WKY 5.69+/-1.47 g/mm2 [mean+/-SD], SHR-NF 3.41+/-1.05, SHR-F 2.87+/-0.26; SHR-NF and SHR-F P<0.05 versus WKY rats). The passive stiffness was greater in SHR-F than in the WKY and SHR-NF groups (central segment exponential stiffness constant, Kcs: SHR-F 70+/-25, SHR-NF 44+/-17, WKY 41+/-13 [mean+/-SD]; SHR-F P<0.05 versus SHR-NF and WKY rats). AT did not improve after 10, 20, and 30 minutes of exposure to colchicine (10(-5), 10(-4), and 10(-3) mol/L) in any group. In the SHR-F group, AT and passive stiffness did not change after 30 to 90 minutes of colchicine exposure (10(-4) mol/L). In summary, the data in this study fail to demonstrate improvement of intrinsic muscle function in SHR with heart failure after colchicine. Thus, in the SHR there is no evidence that colchicine-induced cardiac microtubular depolymerization affects the active or passive properties of hypertrophied or failing left ventricular myocardium.
Resumo:
To study racemic bupivacaine, non-racemic bupivacaine and ropivacaine on myocardial contractility. Isolated Wistar papillary muscles were submitted to 50 and 100 mM racemic bupivacaine (B50 and B100), non-racemic bupivacaine (NR50 and NR100) and ropivacaine (R50 and R100) intoxication. Isometric contraction data were obtained in basal condition (0.2 Hz), after increasing the frequency of stimulation to 1.0 Hz and after 5, 10 and 15 min of local anesthetic intoxication. Data were analyzed as relative changes of variation. Developed tension was higher with R100 than B100 at D1 (4.3 ± 41.1 vs -57.9 ± 48.1). Resting tension was altered with B50 (-10.6 ± 23.8 vs -4.7 ± 5.0) and R50 (-14.0 ± 20.5 vs -0.5 ± 7.1) between D1 and D3. Maximum rate of tension development was lower with B100 (-56.6 ± 38.0) than R50 (-6.3 ± 37.9) and R100 (-1.9 ± 37.2) in D1. B50, B100 and NR100 modified the maximum rate of tension decline from D1 through D2. Time to peak tension was changed with NR50 between D1 and D2. Racemic bupivacaine depressed myocardial contractile force more than non-racemic bupivacaine and ropivacaine. Non-racemic and racemic bupivacaine caused myocardial relaxation impairment more than ropivacaine.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We evaluated the effects of a low intensity aerobic exercise protocol on cardiac remodeling and myocardial function in diabetic rats. Wistar rats were assigned into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary diabetes (DM-Sed), and exercised diabetes (DM-Ex). Diabetes was induced by intraperitoneal injection of streptozotocin. Rats exercised for 9 weeks in treadmill at 11 m/min, 18 min/day. Myocardial function was evaluated in left ventricular (LV) papillary muscles and oxidative stress in LV tissue. Statistical analysis was given by ANOVA or Kruskal-Wallis. Echocardiogram showed diabetic groups with higher LV diastolic diameter-to-body weight ratio and lower posterior wall shortening velocity than controls. Left atrium diameter was lower in DM-Ex than DM-Sed (C-Sed: 5.73 ± 0.49; C-Ex: 5.67 ± 0.53; DM-Sed: 6.41 ± 0.54; DM-Ex: 5.81 ± 0.50 mm; P < 0.05 DM-Sed vs C-Sed and DM-Ex). Papillary muscle function was depressed in DM-Sed compared to C-Sed. Exercise attenuated this change in DM-Ex. Lipid hydroperoxide concentration was higher in DM-Sed than C-Sed and DM-Ex. Catalase and superoxide dismutase activities were lower in diabetics than controls and higher in DM-Ex than DM-Sed. Glutathione peroxidase activity was lower in DM-Sed than C-Sed and DM-Ex. Conclusion. Low intensity exercise attenuates left atrium dilation and myocardial oxidative stress and dysfunction in type 1 diabetic rats.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The role of serum metalloproteinases (MMP) after myocardial infarction (MI) is unknown. Objective: The aim of this study was to evaluate the role of serum MMP-2 and -9 as predictors of ventricular remodeling six months after anterior MI. Methods: We prospectively enrolled patients after their first anterior MI. MMP activity was assayed 12 to 72 hours after the MI. An echocardiogram was performed during the hospitalization and six months later. Results: We included 29 patients; 62% exhibited ventricular remodeling. The patients who exhibited remodeling had higher infarct size based on creatine phosphokinase (CPK) peak values (p = 0.037), higher prevalence of in-hospital congestive heart failure (p = 0.004), and decreased ejection fraction (EF) (p = 0.007). The patients with ventricular remodeling had significantly lower serum levels of inactive MMP-9 (p = 0.007) and significantly higher levels of the active form of MMP-2 (p = 0.011). In a multivariate logistic regression model, adjusted by age, CPK peak, EF and prevalence of heart failure, MMP-2 and -9 serum levels remained associated with remodeling (p = 0.033 and 0.044, respectively). Conclusion: Higher serum levels of inactive MMP-9 were associated with the preservation of left ventricular volumes, and higher serum levels of the active form of MMP-2 were a predictor of remodeling 6 months after MI. (Arq Bras Cardiol. 2013;100(4):315-321).
Resumo:
OBJECTIVE To assess the impact of hyperglycemia in different age-groups of patients with acute myocardial infarction (AM I). RESEARCH DESIGN AND METHODS A total of 2,027 patients with AMI were categorized into one of five age-groups: <50 years (n = 301), >= 50 and <60 (n = 477),>= 60 and <70 (n = 545), >= 70 and <80 (n = 495), and years (n = 209). Hyperglycemia was defined as initial glucose >= 115 mg/dL. RESULTS The adjusted odds ratios for hyperglycemia predicting hospital mortality in groups 1-5 were, respectively, 7.57 (P = 0.004), 3.21 (P 0.046), 3.50 (P = 0.003), 3.20 (P < 0.001.), and 2.16 (P = 0.021). The adjusted P values for correlation between glucose level (as a continuous variable) and mortality were 0.007, <0.001, 0.043, <0.001, and 0.064. The areas under the ROC curves (AUCs) were 0.785, 0.709, 0.657, 0.648, and 0.613. The AUC in group 1 was significantly higher than those in groups 3-5. CONCLUSIONS The impact of hyperglycemia as a risk factor for hospital mortality in AMI is more pronounced in younger patients.
Resumo:
BACKGROUND Vorapaxar is a new oral protease-activated receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation. METHODS In this multinational, double-blind, randomized trial, we compared vorapaxar with placebo in 12,944 patients who had acute coronary syndromes without ST-segment elevation. The primary end point was a composite of death from cardiovascular causes, myocardial infarction, stroke, recurrent ischemia with rehospitalization, or urgent coronary revascularization. RESULTS Follow-up in the trial was terminated early after a safety review. After a median follow-up of 502 days (interquartile range, 349 to 667), the primary end point occurred in 1031 of 6473 patients receiving vorapaxar versus 1102 of 6471 patients receiving placebo (Kaplan-Meier 2-year rate, 18.5010 vs. 19.9%; hazard ratio, 0.92; 95% confidence interval [CI], 0.85 to 1.01; P=0.07). A composite of death from cardiovascular causes, myocardial infarction, or stroke occurred in 822 patients in the vorapaxar group versus 910 in the placebo group (14.7% and 16.4%, respectively; hazard ratio, 0.89; 95% CI, 0.81 to 0.98; P=0.02). Rates of moderate and severe bleeding were 7.2% in the vorapaxar group and 5.2% in the placebo group (hazard ratio, 1.35; 95% CI, 1.16 to 1.58; P<0.001). Intracranial hemorrhage rates were 1.1% and 0.2%, respectively (hazard ratio, 3.39; 95% CI, 1.78 to 6.45; P<0.001). Rates of nonhemorrhagic adverse events were similar in the two groups. CONCLUSIONS In patients with acute coronary syndromes, the addition of vorapaxar to standard therapy did not significantly reduce the primary composite end point but significantly increased the risk of major bleeding, including intracranial hemorrhage. (Funded by Merck; TRACER ClinicalTrials.gov number, NCT00527943.)
Resumo:
OBJECTIVE: This study evaluated the performance of lungs that were preserved with different solutions (Celsior, Perfadex or saline) in an ex vivo rat lung perfusion system. METHODS: Sixty Wistar rats were anesthetized, anticoagulated and randomized into three groups (n = 20). The rats were subjected to antegrade perfusion via the pulmonary artery with Perfadex, Celsior, or saline, followed by 6 or 12 hours of ischemia (4 degrees C, n = 10 in each group). Respiratory mechanics, gas exchange and hemodynamics were measured at 10-minute intervals during the reperfusion of heart-lung blocks in an ex vivo system (IL2-Isolated Perfused Rat or Guinea Pig Lung System, Harvard Apparatus, Holliston, Massachusetts, USA; Hugo Sachs Elektronik, Germany) for 60 minutes. The lungs were prepared for histopathology and evaluated for edema following reperfusion. Group comparisons were performed using ANOVA and the Kruskal-Wallis test with a 5% level of significance. RESULTS: Gas exchange was not significantly different between lungs perfused with either Perfadex or Celsior at the same ischemic times, but it was very low in lungs that were preserved with saline. Airway resistance was greater in the lungs that were preserved for 12 hours. Celsior lungs that were preserved for 6 and 12 hours exhibited lower airway resistance (p = 0.01) compared to Perfadex lungs. Pulmonary artery pressure was not different between the groups, and no significant differences in histopathology and apoptosis were observed between the groups. CONCLUSIONS: Lungs that were preserved with Celsior or Perfadex exhibited similar gas exchange and histopathological findings. Airway resistance was slightly lower in the Celsior-preserved lungs compared with the Perfadex-preserved lungs.
Resumo:
PURPOSE: To investigate the effect of lovastatin on renal ischemia followed by reperfusion. METHODS: Thirty one Wistar rats submitted to left renal ischemia for 60 minutes followed by contralateral nephrectomy were divided into two groups: A (n = 17, control, no treatment), and B (n = 14, lovastatin 15 mg/kg/day p.o. ten days before ischemia). The animals were sacrificed at the end of ischemia, after 24 hours and at seven days after reperfusion. Survival, serum urea and creatinine levels and renal mitochondrial function were evaluated. RESULTS: Mortality was 29.4% in group A and 0.7% in group B. Urea and creatinine levels were increased in both groups, but the values were significantly lower in group B. Mitochondrial function showed decoupling in 83.4% of group A, as opposed to 38.4/% of group B. CONCLUSIONS: The result shows a protective action of renal function by lovastatin administered before ischemia/reperfusion. Since most of the mitochondrial fraction presented membranes with the ability to maintain ATP production in group B, stabilization of the mitochondrial membrane should be considered as part of the protective action of lovastatin on renal function in ischemia/reperfusion.
Resumo:
Background: The role of an impaired estimated glomerular filtration rate (eGFR) at hospital admission in the outcome of acute kidney injury (AKI) after acute myocardial infarction (AMI) has been underreported. The aim of this study was to assess the influence of an admission eGFR<60 mL/min/1.73 m(2) on the incidence and early and late mortality of AMI-associated AKI. Methods: A prospective study of 828 AMI patients was performed. AKI was defined as a serum creatinine increase of >= 50% from the time of admission (RIFLE criteria) in the first 7 days of hospitalization. Patients were divided into subgroups according to their eGFR upon hospital admission (MDRD formula, mL/min/1.73 m(2)) and the development of AKI: eGFR >= 60 without AKI, eGFR<60 without AKI, eGFR >= 60 with AKI and eGFR<60 with AKI. Results: Overall, 14.6% of the patients in this study developed AKI. The admission eGFR had no impact on the incidence of AKI. However, the admission eGFR was associated with the outcome of AMI-associated AKI. The adjusted hazard ratios (AHR, Cox multivariate analysis) for 30-day mortality were 2.00 (95% CI 1.11-3.61) for eGFR, 60 without AKI, 4.76 (95% CI 2.45-9.26) for eGFR >= 60 with AKI and 6.27 (95% CI 3.20-12.29) for eGFR, 60 with AKI. Only an admission eGFR of <60 with AKI was significantly associated with a 30-day to 1-year mortality hazard (AHR 3.05, 95% CI 1.50-6.19). Conclusions: AKI development was associated with an increased early mortality hazard in AMI patients with either preserved or impaired admission eGFR. Only the association of impaired admission eGFR and AKI was associated with an increased hazard for late mortality among these patients.
Resumo:
Background and objectives: Extracorporeal circulation (ECC) may change drug pharmacokinetics as well as brain function. The objectives of this study are to compare emergence time and postoperative sedation intensity assessed by the bispectral index (BIS) and the Ramsay sedation scale in patients undergoing myocardial revascularization (MR) with or without ECC. Method: Ten patients undergoing MR with ECC (ECC group) and 10 with no ECC (no-ECC group) were administered with sufentanyl, propofol 2.0 mu g.mL(-1) and pancuronium target controlled infusion. After surgery, propofol infusion was reduced to 1 mu g.mL(-1) and suspended when extubation was indicated. Patients BIS, Ramsay scale and time to wake up were assessed. Results: The ECC group showed lower BIS values beginning at 60 minutes after surgery (no-ECC = 66 +/- 13 and ECC = 53 +/- 14, p = 0.01) until 120 minutes after infusion (no-ECC = 85 +/- 8 and ECC = 73 +/- 12, p = 0.02). Sedation level measured by the Ramsay scale was higher in the ECC group at 30 minutes after the end of the surgery (no-ECC = 5 +/- 1 and ECC = 6 +/- 0, p = 0.021), at the end of infusion (no-ECC = 5 +/- 1 and ECC = 6 +/- 1, p = 0.012) and 5 minutes after the end of infusion (no-ECC = 4 +/- 1 and ECC = 5 +/- 0.42, p = 0.039). Emergence from anesthesia time was higher in the ECC group (no-ECC = 217 +/- 81 and ECC = 319 +/- 118, p = 0.038). Conclusions: There was a higher intensity of sedation after the end of surgery and a longer wake up time in ECC group, suggesting changes in the pharmacokinetics of propofol or effects of ECC on central nervous system.
Resumo:
Background: This pilot study aimed to verify if glycemic control can be achieved in type 2 diabetes patients after acute myocardial infarction (AMI), using insulin glargine (iGlar) associated with regular insulin (iReg), compared with the standard intensive care unit protocol, which uses continuous insulin intravenous delivery followed by NPH insulin and iReg (St. Care). Patients and Methods: Patients (n = 20) within 24 h of AMI were randomized to iGlar or St. Care. Therapy was guided exclusively by capillary blood glucose (CBG), but glucometric parameters were also analyzed by blinded continuous glucose monitoring system (CGMS). Results: Mean glycemia was 141 +/- 39 mg/dL for St. Care and 132 +/- 42 mg/dL for iGlar by CBG or 138 +/- 35 mg/dL for St. Care and 129 +/- 34 mg/dL for iGlar by CGMS. Percentage of time in range (80-180 mg/dL) by CGMS was 73 +/- 18% for iGlar and 77 +/- 11% for St. Care. No severe hypoglycemia (<= 40 mg/dL) was detected by CBG, but CGMS indicated 11 (St. Care) and seven (iGlar) excursions in four subjects from each group, mostly in sulfonylurea users (six of eight patients). Conclusions: This pilot study suggests that equivalent glycemic control without increase in severe hyperglycemia may be achieved using iGlar with background iReg. Data outputs were controlled by both CBG and CGMS measurements in a real-life setting to ensure reliability. Based on CGMS measurements, there were significant numbers of glycemic excursions outside of the target range. However, this was not detected by CBG. In addition, the data indicate that previous use of sulfonylurea may be a potential major risk factor for severe hypoglycemia irrespective of the type of insulin treatment.