954 resultados para Muscle function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histone deacetylases (HDACs) have a central role in the regulation of gene expression, which undergoes alternative splicing during embryonic stem cell (ES) cell differentiation. Alternative splicing gives rise to vast diversity over gene information, arousing public concerns in the last decade. In this chapter, we describe a strategy to detect HDAC7 alternative splicing and analyze its function on ES cell differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Collagen VI (COLVI), a protein ubiquitously expressed in connective tissues, is crucial for structural integrity, cellular adhesion, migration and survival. Six different genes are recognized in mammalians, encoding six COLVI-chains that assemble as two ‘short’ (α1, α2) and one ‘long’ chain (theoretically any one of α3–6). In humans, defects in the most widely expressed heterotrimer (α123), due to mutations in the COL6A1-3 genes, cause a heterogeneous group of neuromuscular disorders, collectively termed COLVI-related muscle disorders. Little is known about the function(s) of the recently described α4-6 chains and no mutations have been detected yet. In this study, we characterized two novel COLVI long chains in zebrafish that are most homologous to the mammalian α4 chain; therefore, we named the corresponding genes col6a4a and col6a4b. These orthologues represent ancestors of the mammalian Col6a4-6 genes. By in situ hybridization and RT-qPCR, we unveiled a distinctive expression kinetics for col6a4b, compared with the other col6a genes. Using morpholino antisense oligonucleotides targeting col6a4a, col6a4b and col6a2, we modelled partial and complete COLVI deficiency, respectively. All morphant embryos presented altered muscle structure and impaired motility. While apoptosis was not drastically increased, autophagy induction was defective in all morphants. Furthermore, motoneuron axon growth was abnormal in these morphants. Importantly, some phenotypical differences emerged between col6a4a and col6a4b morphants, suggesting only partial functional redundancy. Overall, our results further confirm the importance of COLVI in zebrafish muscle development and may provide important clues for potential human phenotypes associated with deficiency of the recently described COLVI-chains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we isolated a novel crotamine like protein from the Crotalus durissus cascavella venom by combination of molecular exclusion and analytical reverse phase HPLC. Its primary structure was:YKRCHKKGGHCFPKEKICLPPSSDLGKMDCRWKRK-CCKKGS GK. This protein showed a molecular mass of 4892.89 da that was determined by Matrix Assisted Laser Desorption Ionization Time-of-flight (MALDI-TOF) mass spectrometry. The approximately pI value of this protein was determined in 9.9 by two-dimensional electrophoresis. This crotamine-like protein isolated here and that named as Cro 2 produced skeletal muscle spasm and spastic paralysis in mice similarly to other crotamines like proteins. Cro 2 did not modify the insulin secretion at low glucose concentration (2.8 and 5.6 mM), but at high glucose concentration (16.7 mM) we observed an insulin secretion increasing of 2.7-3.0-fold than to control. The Na+ channel antagonist tetrodoxin (6 mM) decreased glucose and Cro 2-induced insulin secretion. These results suggested that Na+ channel are involved in the insulin secretion. In this article, we also purified some peptide fragment from the treatment of reduced and carboxymethylated Cro 2 (RC-Cro 2) with cyanogen bromide and protease V8 from Staphylococcus aureus. The isolated pancreatic beta-cells were then treated with peptides only at high glucose concentration (16.7 mM), in this condition only two peptides induced insulin secretion. The amino acid sequence homology analysis of the whole crotamine as well as the biologically-active peptide allowed determining the consensus region of the biologically-active crotamine responsible for insulin secretion was KGGHCFPKE and DCRWKWKCCKKGSG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs) capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization. Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances. When transplanted into infarcted mouse hearts, CPCs engrafted long-term in the infarct zone and surrounding myocardium without causing teratomas or arrhythmias. The grafted cells differentiated into cross-striated cardiomyocytes forming gap junctions with the host cells, while also contributing to neovascularization. Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function. Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regular exercise stimulates numerous structural, metabolic, and morphological adaptations in skeletal muscle. These adaptations are vital to maintain human health over the life span. Exercise is therefore seen as a primary intervention to reduce the risk of chronic disease. Advances in molecular biology, biochemistry, and bioinformatics, combined with exercise physiology, have identified many key signaling pathways as well as transcriptional and translational processes responsible for exercise-induced adaptations. Noncoding RNAs, and specifically microRNAs (miRNAs), constitute a new regulatory component that may play a role in these adaptations. The short single-stranded miRNA sequences bind to the 3' untranslated region of specific messenger RNAs (mRNAs) on the basis of sequence homology. This results in the degradation of the target mRNA or the inhibition of protein translation causing repression of the corresponding protein. While tissue specificity or enrichment of certain miRNAs makes them ideal targets to manipulate and understand tissue development, function, health, and disease, other miRNAs are ubiquitously expressed; however, it is uncertain whether their mRNA/protein targets are conserved across different tissues. miRNAs are stable in plasma and serum and their altered circulating expression levels in disease conditions may provide important biomarker information. The emerging research into the role that miRNAs play in exercise-induced adaptations has predominantly focused on the miRNA species that are regulated in skeletal muscle or in circulation. This chapter provides an overview of these current research findings, highlights the strengths and weaknesses identified to date, and suggests where the exercise-miRNA field may move into the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The loss of muscle strength and increased injury rate in aging skeletal muscle has previously been attributed to loss of muscle protein (cross-sectional area) and/or decreased neural activation. However, it is becoming clear that force transfer within and between fibers plays a significant role in this process as well. Force transfer involves a secondary matrix of proteins that align and transmit the force produced by the thick and thin filaments along muscle fibers and out to the extracellular matrix. These specialized networks of cytoskeletal proteins aid in passing force through the muscle and also serve to protect individual fibers from injury. This review discusses the cytoskeleton proteins that have been identified as playing a role in muscle force transmission, both longitudinally and laterally, and where possible highlights how disease, aging, and exercise influence the expression and function of these proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold water immersion (CWI) and active recovery (ACT) are frequently used as postexercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q̇), muscle oxygenation (SmO2), blood volume (tHb), muscle temperature (Tmuscle), and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q̇ (7.9 ± 2.7 l) and Tmuscle (2.2 ± 0.8°C) increased, whereas SmO2 (-21.5 ± 8.8%) and tHb (-10.1 ± 7.7 μM) decreased after exercise (P < 0.05). During CWI, Q̇ (-1.1 ± 0.7 l) and Tmuscle (-6.6 ± 5.3°C) decreased, while tHb (121 ± 77 μM) increased (P < 0.05). In the hour after CWI, Q̇ and Tmuscle remained low, while tHb also decreased (P < 0.05). By contrast, during ACT, Q̇ (3.9 ± 2.3 l), Tmuscle (2.2 ± 0.5°C), SmO2 (17.1 ± 5.7%), and tHb (91 ± 66 μM) all increased (P < 0.05). In the hour after ACT, Tmuscle, and tHb remained high (P < 0.05). Peak isometric strength during 10-s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (-30 to -45 Nm; P < 0.05). Muscle deoxygenation time during MVCs increased after ACT (P < 0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI (P = 0.052). These findings suggest first that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and second, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells.

RESULTS: We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism.

CONCLUSION: These findings position STARS as an important regulator of skeletal muscle growth and regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose Radiation therapy (RT) is often recommended in the treatment of pelvic cancers. Following RT, a high prevalence of pelvic floor dysfunctions (urinary incontinence, dyspareunia, and fecal incontinence) is reported. However, changes in pelvic floor muscles (PFMs) after RT remain unclear. The purpose of this review was to systematically document the effects of RT on the PFM structure and function in patients with cancer in the pelvic area. Methods An electronic literature search using Pubmed Central, CINAHL, Embase, and SCOPUS was performed from date of inception up to June 2014. The following keywords were used: radiotherapy, muscle tissue, and pelvic floor. Two reviewers selected the studies in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement (PRISMA). Out of the 369 articles screened, 13 met all eligibility criteria. The methodological quality was assessed using the QualSyst scoring system, and standardized mean differences were calculated. Results Thirteen studies fulfilled all inclusion criteria, from which four were of good methodological quality. One presented strong evidence that RT affects PFM structure in men treated for prostate cancer. Four presented high-level evidence that RT affects PFM function in patients treated for rectal cancer. Meta-analysis was not possible due to heterogeneity and lack of descriptive statistics. Conclusion There is some evidence that RT has detrimental impacts on both PFMs’ structure and function. Implications for cancer survivors A better understanding of muscle damage and dysfunction following RT treatment will improve pelvic floor rehabilitation and, potentially, prevention of its detrimental impacts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master, Biochemistry) -- Queen's University, 2016-10-14 02:44:01.604

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic sustained hypoxia (CH) induces structural and functional adaptations in respiratory muscles of animal models, however the underlying molecular mechanisms are unclear. This study explores the putative role of CH-induced redox remodeling in a translational mouse model, with a focus on the sternohyoid—a representative upper airway dilator muscle involved in the control of pharyngeal airway caliber. We hypothesized that exposure to CH induces redox disturbance in mouse sternohyoid muscle in a time-dependent manner affecting metabolic capacity and contractile performance. C57Bl6/J mice were exposed to normoxia or normobaric CH (FiO2 = 0.1) for 1, 3, or 6 weeks. A second cohort of animals was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine in the drinking water). Following CH exposure, we performed 2D redox proteomics with mass spectrometry, metabolic enzyme activity assays, and cell-signaling assays. Additionally, we assessed isotonic contractile and endurance properties ex vivo. Temporal changes in protein oxidation and glycolytic enzyme activities were observed. Redox modulation of sternohyoid muscle proteins key to contraction, metabolism and cellular homeostasis was identified. There was no change in redox-sensitive proteasome activity or HIF-1α content, but CH decreased phospho-JNK content independent of antioxidant supplementation. CH was detrimental to sternohyoid force- and power-generating capacity and this was prevented by chronic antioxidant supplementation. We conclude that CH causes upper airway dilator muscle dysfunction due to redox modulation of proteins key to function and homeostasis. Such changes could serve to further disrupt respiratory homeostasis in diseases characterized by CH such as chronic obstructive pulmonary disease. Antioxidants may have potential use as an adjunctive therapy in hypoxic respiratory disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Habitual sedentary behavior increases risk of chronic disease, hospitalization and poor quality of life. Short-term bed rest or disuse accelerates the loss of muscle mass, function, and glucose tolerance. Optimizing nutritional practices and protein intake may reduce the consequences of disuse by preserving metabolic homeostasis and muscle mass and function. Most modes of physical inactivity have the potential to negatively impact the health of older adults more than their younger counterparts. Mechanistically, mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis are negatively affected by disuse. This contributes to reduced muscle quality and is accompanied by impaired glucose regulation. Simply encouraging increased protein and/or energy consumption is a well-intentioned, but often impractical strategy to protect muscle health. Emerging evidence suggests that leucine supplemented meals may partially and temporarily protect skeletal muscle during disuse by preserving anabolism and mitigating reductions in mass, function and metabolic homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last 50 years, the number of individuals over the age of 65 years in the United States has doubled. A further doubling is expected by 2030, dramatically increasing the number of adults at risk of sarcopenia, a condition characterized by an age-related loss of muscle mass with an associated reduction in physical function. A reduction in muscle mass and functional capacity is typically viewed as an undesirable, yet inevitable, consequence of aging, and in its early stages, may be easily masked by subtle lifestyle adaptations. However, advanced sarcopenia is synonymous with physical frailty and is associated with an increased likelihood of falls and impairments in the ability to perform routine activities of daily living. In many instances, the progression of sarcopenia is mirrored by a decrease in physical activity, which feeds into a vicious cycle of disuse and negative outcomes, including impaired insulin action, accelerated loss of muscle and bone mass, fatigue, impaired motor control and functional capacity, and increased morbidity and mortality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Asymmetrical loading patterns are commonplace in football sports. Our aim was to examine the influence of training age and limb function on lower-body musculoskeletal morphology. METHODS: Fifty-five elite football athletes were stratified into less experienced (≤3 yr; n = 27) and more experienced (>3 yr; n = 28) groups by training age. All athletes underwent whole-body dual-energy x-ray absorptiometry scans and lower-body peripheral quantitative computed tomography tibial scans on the kicking and support limbs. RESULTS: Significant interactions between training age and limb function were evident across all skeletal parameters (F16, 91 = 0.182, P = 0.031, Wilks Λ = 0.969). Asymmetries between limbs were significantly larger in the more experienced players than the less experienced players for tibial mass (P ≤ 0.044, d ≥ 0.50), total cross-sectional area (P ≤ 0.039, d ≥ 0.53), and stress-strain indices (P ≤ 0.050, d ≥ 0.42). No significant asymmetry was evident for total volumetric density. More experienced players also exhibited greater lower-body tibial mass (P ≤ 0.001, d ≥ 1.22), volumetric density (P ≤ 0.009, d ≥ 0.79), cross-sectional area (P ≤ 0.387, d ≥ 0.21), stress-strain indices (P ≤ 0.012, d ≥ 0.69), fracture loads (P ≤ 0.018, d ≥ 0.57), and muscle mass and cross-sectional area (P ≤ 0.016, d ≥ 0.68) than less experienced players. CONCLUSIONS: Asymmetries were evident in athletes as a product of limb function over time. Chronic exposure to routine high-impact gravitational loads afforded to the support limb preferentially improved bone mass and structure (cross-sectional area and cortex thickness) as potent contributors to bone strength relative to the high-magnitude muscular loads predominantly afforded to the kicking limb.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose Radiation therapy (RT) is often recommended in the treatment of pelvic cancers. Following RT, a high prevalence of pelvic floor dysfunctions (urinary incontinence, dyspareunia, and fecal incontinence) is reported. However, changes in pelvic floor muscles (PFMs) after RT remain unclear. The purpose of this review was to systematically document the effects of RT on the PFM structure and function in patients with cancer in the pelvic area. Methods An electronic literature search using Pubmed Central, CINAHL, Embase, and SCOPUS was performed from date of inception up to June 2014. The following keywords were used: radiotherapy, muscle tissue, and pelvic floor. Two reviewers selected the studies in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement (PRISMA). Out of the 369 articles screened, 13 met all eligibility criteria. The methodological quality was assessed using the QualSyst scoring system, and standardized mean differences were calculated. Results Thirteen studies fulfilled all inclusion criteria, from which four were of good methodological quality. One presented strong evidence that RT affects PFM structure in men treated for prostate cancer. Four presented high-level evidence that RT affects PFM function in patients treated for rectal cancer. Meta-analysis was not possible due to heterogeneity and lack of descriptive statistics. Conclusion There is some evidence that RT has detrimental impacts on both PFMs’ structure and function. Implications for cancer survivors A better understanding of muscle damage and dysfunction following RT treatment will improve pelvic floor rehabilitation and, potentially, prevention of its detrimental impacts.