995 resultados para Multiphase Turbulent Flow
Resumo:
This study aims to investigate whether infrared diode low-level laser therapy (LLLT) increased salivary flow rate and altered pH value, protein concentration, and peroxidase and amylase activities in saliva of rats. Wistar rats were used and divided into three groups. Experimental groups (A and 13) had their parotid, submandibular and sublingual glands submitted to diode laser, 808-nm wavelength, on two consecutive days. The dose results were 4 and 8 J/cm(2), respectively. A red guide light was used to visualize the irradiated area. Group C was irradiated only with red pilot beam and served as control. The saliva samples were collected after each irradiation step (first and second collection days) and 1 week after the first irradiation (seventh day). Statistical analysis was performed, and differences were observed according to different days of salivary collection. The results showed that salivary flow rate for groups A and B was higher on the seventh day if it is compared to data obtained for the first day (p<0.05). LLLT applications on salivary glands are a therapy procedure that requires further studies.
Resumo:
Objective. To investigate the processing induced particle alignment on fracture behavior of four multiphase dental ceramics (one porcelain, two glass-ceramics and a glass-infiltrated-alumina composite). Methods. Disks (empty set12mm x 1.1 mm-thick) and bars (3 mm x 4 mm x 20 mm) of each material were processed according to manufacturer instructions, machined and polished. Fracture toughness (K(IC)) was determined by the indentation strength method using 3-point bending and biaxial flexure fixtures for the fracture of bars and disks, respectively. Microstructural and fractographic analyses were performed with scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Results. The isotropic microstructure of the porcelain and the leucite-based glass-ceramic resulted in similar fracture toughness values regardless of the specimen geometry. On the other hand, materials containing second-phase particles with high aspect ratio (lithium disilicate glass-ceramic and glass-infiltrated-alumina composite) showed lower fracture toughness for disk specimens compared to bars. For the lithium disilicate glass-ceramic disks, it was demonstrated that the occurrence of particle alignment during the heat-pressing procedure resulted in an unfavorable pattern that created weak microstructural paths during the biaxial test. For the glass-infiltrated-alumina composite, the microstructural analysis showed that the large alumina platelets tended to align their large surfaces perpendicularly to the direction of particle deposition during slip casting of green preforms. Significance. The fracture toughness of dental ceramics with anisotropic microstructure should be determined by means of biaxial testing, since it results in lower values. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: The aim of the present study was to compare the effect of low-dose pilocarpine and cevimeline as stimulants for salivary flow in healthy subjects. Methods: In this cross-over clinical trial with a 1-week washout period, 40 male volunteers were submitted to an oral dose of pilocarpine 1% (Salagen (TM)) -60 mu g kg(-1) body-weight (Group 1) or Cevimeline (Evoxac (TM)) -30 mg (Group 2). Saliva samples were collected and the salivary flow rate was measured (ml min(-1)) at baseline and 20, 40, 60, 80, 140 and 200 min after administration of drugs. In addition, salivary secretion was also measured under mechanical stimulation to observe salivary gland function. Results: The data were analyzed by Friedman and Wilcoxon signed-rank tests (significance level = 5%). Pilocarpine and cevimeline significantly increased salivary flow 140 min after intake. There was a significant higher secretion with cevimeline 140 and 200 min after administration. There were no differences seen among subjects in the salivary glands function by mechanical stimulation. Conclusion: Both drugs showed efficacy in increasing the salivary flow in healthy volunteers, but cevimeline was more effective than pilocarpine.
Resumo:
Objective. The aim of this study was to evaluate the flow rate of 3 endodontic sealers: Sealer 26, AH Plus, and MTA Obtura. Study design. According to the method proposed by the American Dental Association (ADA specification no. 57), the sealers were placed between 2 glass slabs under a weight of 120 g. The diameters of the formed discs were measured with a digital paquimeter. The test was repeated 5 times for each sealer. Results. The results were expressed as arithmetic means, and the statistical analysis was performed through Tukey test. AH Plus showed significantly superior flow rate compared with Sealer 26 and MTA Obtura. There was no statistically significant difference between flow rates presented by Sealer 26 and MTA Obtura. Conclusion. Within the limitations of this in vitro study, it was concluded that all of the the endodontic sealers tested presented greater flow than the minimum recommended in the ADA 57 specification. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:e47-e49)
Resumo:
Interval-valued versions of the max-flow min-cut theorem and Karp-Edmonds algorithm are developed and provide robustness estimates for flows in networks in an imprecise or uncertain environment. These results are extended to networks with fuzzy capacities and flows. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Consider a tandem system of machines separated by infinitely large buffers. The machines process a continuous flow of products, possibly at different speeds. The life and repair times of the machines are assumed to be exponential. We claim that the overflow probability of each buffer has an exponential decay, and provide an algorithm to determine the exact decay rates in terms of the speeds and the failure and repair rates of the machines. These decay rates provide useful qualitative insight into the behavior of the flow line. In the derivation of the algorithm we use the theory of Large Deviations.
Resumo:
A small disturbance in the axisymmetric, bathtub-like flow with strong vorticity is considered and the asymptotic representation of the solution is found. It is shown that if the disturbance is smaller than a certain critical scale, the conventional strong vortex approximation cannot describe the field generated by the disturbance not only in the vicinity of the disturbance but also at the distances much larger than the critical scale. (C) 2001 American Institute of Physics.
Resumo:
Theoretical and numerical analysis is performed for an inviscid axisymmetric vortical bathtub-type flow. The level of vorticity is kept high so that the image of the flow on the radial-axial plane (r-z plane) is not potential. The most significant findings are: (1) the region of validity of the strong vortex approximation is separated from the drain by a buffer region, (2) the power-law asymptote of the stream function, specified by Delta Psi similar to r(4/3) Deltaz, appears near the axis when vorticity in the flow is sufficiently strong and (3) the local Rossby number in the region of the 4/3 power-law the initial vorticity level in the flow and the global Rossby number.
Resumo:
Shock-tunnel experiments have been performed to measure the effect on skin-friction drag in a supersonic combustor of flow disturbances induced by hydrogen fuel injection transverse to the airstream. Constant-area, circular cross section combustors of lengths varying up to 0.52 m were employed. The experiments were done at a stagnation enthalpy of 7.2 MJ . kg(-1) and a Mach number of 4.3, with a boundary layer that was turbulent downstream of the 0.14-m station in the combustors. Combustor skin-friction drag was measured by a method based on the stress wave force balance, the method being validated by agreement between fuel-off skin-friction drag measurements and predictions using existing skin-friction theories. When fuel was injected, it was found that the drag remained at fuel-off values. Thus, the streamwise vortices and other flow disturbances induced by the fuel injection, mixing, and combustion, which are expected to be present in a scramjet combustor, did not influence the skin-friction drag of the combustors.
Resumo:
A flow tagging technique based upon ionic fluorescence in strontium is investigated for applications to velocity measurements in gas flows. The method is based upon a combination of two laser based spectroscopic techniques, i.e. resonantly-enhanced ionisation and laser-induced ionic fluorescence. Strontium is first ionised and then planar laser-induced fluorescence is utilised to give 2D 'bright images' of the ionised region of the flow at a given time delay. The results show that this method can be used for velocity measurements. The velocities were measured in two types of air-acetylene flames - a slot burner and a circular burner yielding velocities of 5.1 +/- 0.1 m/s and 9.3 +/- 0.2 m/s, respectively. The feasibility of the method for the determination of velocities in faster flows than those investigated here is discussed.
Resumo:
Near-Resonant Holographic Interferometry is a powerful technique which extends the established advantages of conventional holographic interferometry by allowing a species-specific number density to be determined. It has been tested in the harsh flow conditions generated in a high enthalpy facility yielding information about the shock shape on a cylindrical body and on the distribution of a trace species seeded into the flow.
Resumo:
A model has been developed which enables the viscosities of coal ash slags to be predicted as a function of composition and temperature under reducing conditions. The model describes both completely liquid and heterogeneous, i.e. partly crystallised, slags in the Al2O3-CaO-'FeO'-SiO2 system in equilibrium with metallic iron. The Urbain formalism has been modified to describe the viscosities of the liquid slag phase over the complete range of compositions and a wide range of temperatures. The computer package F * A * C * T was used to predict the proportions of solids and the compositions of the remaining liquid phases. The Roscoe equation has been used to describe the effect of presence of solid suspension (slurry effect) on the viscosity of partly crystallised slag systems. The model provides a good description of the experimental data of fully liquid, and liquid + solids mixtures, over the complete range of compositions and a wide range of temperatures. This model can now be used for viscosity predictions in industrial slag systems. Examples of the application of the new model to coal ash fluxing and blending are given in the paper. (C) 2001 Elsevier Science Ltd. All rights reserved.