855 resultados para Multicultural Diversity and Roundtable
Resumo:
The present paper is the result of a four-year-long project examining the concept and the policies of cultural diversity and the impact of digital media upon the regulatory environment where the goal of cultural diversity is to be achieved. The focus of the project was primarily on the international level and in particular on the World Trade Organization (WTO) and the United Nations Educational Scientific and Cultural Organization (UNESCO), which also epitomise the often framed as opposing pair of trade and culture. In the broad context of the project, we sought to pinpoint the essential elements of an international trade-and-culture conducive framework that can also overcome the existing fragmentation in the field of international law and move towards more coherent solutions. In a narrower context, we sketched some possible improvements to the WTO law that can make it more suitable to the digital networked environment and to the objective of diverse media that some states aspire. . Our key messages are: (1) Neither the WTO nor UNESCO currently offers appropriate solutions to the trade and culture predicament and allows for efficient protection and promotion of cultural diversity; (2) The trade and culture discourse is overly politicised and due to the related path dependencies, a number of feasible solutions appears presently blocked; (3) The digital networked environment has profoundly changed the ways cultural content is created, distributed, accessed and consumed, and may thus offer good reasons to reassess and readjust the present models of governance; (4) Access to information appears to be the most appropriate focus of the discussions with view to protecting and promoting cultural diversity in the new digital media setting, both in local and global contexts; (5) This new focal point demands also broadening and interconnecting the policy discussions, which should go beyond the narrow scope of audiovisual media services, but cautiously account for the developments at the network and applications levels, as well as in other domains, such as most notably intellectual property rights protection; (6) There are various ways in which the WTO can be made more conducive to cultural policy considerations and these include, among others, improved and updated services classifications; enhanced legal certainty with regard to digitally transferred goods and services; incorporation of rules on subsidies for services and on competition.
Resumo:
A review of the volume of collected essays edited by Hildegard Schneider and Peter van den Bossche (Intersentia 2008), which looks at diverse implications of the recently adopted UNESCO Convention on Cultural Diversity and discusses these from European and international law perspectives.
Resumo:
Increasing ethnic diversity and whether or not it impacts on trust are highly debated topics. Numerous studies report a negative relationship between diversity and trust, particularly in the US. A growing body of follow-up studies examined the extent to which these findings can be transferred to Europe, but the results remain inconclusive. Moving beyond the discussion of the mere existence or absence of diversity effects on trust, this study is concerned with the moderation of this relationship: It addresses the neglected role of subnational integration policies influencing diversity’s impact on trust. Empirical tests not only indicate that integration policies moderate the relationship, but also suggest that the influence of policies varies substantively according to the specific policy aspect under consideration.
Resumo:
In order to explore the diversity and selective signatures of duplication and deletion human copy number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single nucleotide variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load.
Resumo:
1. Recent theoretical studies suggest that the stability of ecosystem processes is not governed by diversity per se, but by multitrophic interactions in complex communities. However, experimental evidence supporting this assumption is scarce.2. We investigated the impact of plant diversity and the presence of above- and below-ground invertebrates on the stability of plant community productivity in space and time, as well as the interrelationship between both stability measures in experimental grassland communities.3. We sampled above-ground plant biomass on subplots with manipulated above- and below-ground invertebrate densities of a grassland biodiversity experiment (Jena Experiment) 1, 4 and 6 years after the establishment of the treatments to investigate temporal stability. Moreover, we harvested spatial replicates at the last sampling date to explore spatial stability.4. The coefficient of variation of spatial and temporal replicates served as a proxy for ecosystem stability. Both spatial and temporal stability increased to a similar extent with plant diversity. Moreover, there was a positive correlation between spatial and temporal stability, and elevated plant density might be a crucial factor governing the stability of diverse plant communities.5. Above-ground insects generally increased temporal stability, whereas impacts of both earthworms and above-ground insects depended on plant species richness and the presence of grasses. These results suggest that inconsistent results of previous studies on the diversity–stability relationship have in part been due to neglecting higher trophic-level interactions governing ecosystem stability.6. Changes in plant species diversity in one trophic level are thus unlikely to mirror changes in multitrophic interrelationships. Our results suggest that both above- and below-ground invertebrates decouple the relationship between spatial and temporal stability of plant community productivity by differently affecting the homogenizing mechanisms of plants in diverse plant communities.7.Synthesis. Species extinctions and accompanying changes in multitrophic interactions are likely to result not only in alterations in the magnitude of ecosystem functions but also in its variability complicating the assessment and prediction of consequences of current biodiversity loss.
Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought
Resumo:
Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.
Resumo:
Ecosystems at high northern latitudes are subject to strong climate change. Soil processes, such as carbon and nutrient cycles, which determine the functioning of these ecosystems, are controlled by soil fauna. Thus assessing the responses of soil fauna communities to environmental change will improve the predictability of the climate change impacts on ecosystem functioning. For this purpose, trait assessment is a promising method compared to the traditional taxonomic approach, but it has not been applied earlier. In this study the response of a sub-arctic soil Collembola community to long-term (16 years) climate manipulation by open top chambers was assessed. The drought-susceptible Collembola community responded strongly to the climate manipulation, which substantially reduced soil moisture and slightly increased soil temperature. The total density of Collembola decreased by 51% and the average number of species was reduced from 14 to 12. Although community assessment showed species-specific responses, taxonomically based community indices, species diversity and evenness, were not affected. However, morphological and ecological trait assessments were more sensitive in revealing community responses. Drought-tolerant, larger-sized, epiedaphic species survived better under the climate manipulation than their counterparts, the meso-hydrophilic, smaller-sized and euedaphic species. Moreover it also explained the significant responses shown by four taxa. This study shows that trait analysis can both reveal responses in a soil fauna community to climate change and improve the understanding of the mechanisms behind them.
Resumo:
Marine sediments harbor an enormous quantity of microorganisms, including a multitude of novel species. The habitable zone of the marine sediment column begins at the sediment-water interface and probably extends to depths of several thousands of meters. Studies of the microbial diversity in this ecosystem have mostly relied on molecular biological techniques. We used a complementary method - analysis of intact polar membrane lipids - to characterize the in-situ microbial community in sediments covering a wide range of environmental conditions from Peru Margin, Equatorial Pacific, Hydrate Ridge, and Juan de Fuca Ridge. Bacterial and eukaryotic phospholipids were only detected in surface sediments from the Peru Margin. In contrast, deeply buried sediments, independent of their geographic location, were dominated by archaeal diether and tetraether lipids with various polar head groups and core lipids. We compared ring distributions of archaeal tetraether lipids derived from polar glycosidic precursors with those that are present as core lipids. The distributions of these related compound pools were distinct, suggestive of different archaeal sources, i.e., the polar compounds derive from sedimentary communities and the core lipids are fossil remnants from planktonic communities with possible admixtures of decayed sedimentary archaea. This in-situ production of distinct archaeal lipid populations potentially affects applications of the TEX86 paleotemperature proxy as demonstrated by offsets in reconstructed temperatures between both pools. We evaluated how varying cell and lipid stabilities will influence the sedimentary pool by using a box-model. The results are consistent with (i) a requirement of continuous inputs of freshly synthesized lipids in subsurface sediments for explaining the observed distribution of intact polar lipids, and (ii) decreasing lipid inputs with increasing burial depth.
Resumo:
The moist evergreen Afromontane forest of SW Ethiopia has become extremely fragmented and most remnants are intensively managed for cultivation of coffee (Coffea arabica). We investigated the distributions of epiphytic orchids in shade trees and their understory in forests with contrasting management intensity to determine biodiversity losses associated with coffee cultivation and to determine the capacity of coffee shrubs to act as refugia for orchid species. We studied epiphytic orchids in managed forests and natural forests and recorded orchid diversity and abundance in different tree zones of 339 trees and in the understory. Coffee management was associated with a downward shift of orchid species as orchid species were occurring in significantly lower tree zones in managed forest. The number of shrubs in the understory of managed forest was not higher than in natural forests, yet orchid abundance was higher in the understory of managed forests. Local extinctions of epiphytic orchids and species losses in the outer tree zones (a contraction of habitat) in managed forests are most likely driven by losses of large, complex-structured climax trees, and changes in microclimate, respectively. Coffee shrubs and their shade trees in managed forests are shown here to be a suitable habitat for only a limited set of orchid species. As farmers continue to convert natural forest into managed forest for coffee cultivation, further losses of habitat quality and collateral declines in regional epiphytic orchid diversity can be expected. Therefore, the conservation of epiphytic orchid diversity, as well as other components of diversity of the coffee forests, must primarily rely on avoiding coffee management intensification in the remaining natural forest. Convincing farmers to keep forest-climax trees in their coffee forest and to tolerate orchids on their coffee shrubs may also contribute to a more favorable conservation status of orchids in Ethiopian coffee agroecosystems.
Resumo:
An understanding of spatial patterns of plant species diversity and the factors that drive those patterns is critical for the development of appropriate biodiversity management in forest ecosystems. We studied the spatial organization of plants species in human- modified and managed oak forests (primarily, Quercus faginea) in the Central Pre- Pyrenees, Spain. To test whether plant community assemblages varied non-randomly across the spatial scales, we used multiplicative diversity partitioning based on a nested hierarchical design of three increasingly coarser spatial scales (transect, stand, region). To quantify the importance of the structural, spatial, and topographical characteristics of stands in patterning plant species assemblages and identify the determinants of plant diversity patterns, we used canonical ordination. We observed a high contribution of ˟-diversity to total -diversity and found ˟-diversity to be higher and ˞-diversity to be lower than expected by random distributions of individuals at different spatial scales. Results, however, partly depended on the weighting of rare and abundant species. Variables expressing the historical management intensities of the stand such as mean stand age, the abundance of the dominant tree species (Q. faginea), age structure of the stand, and stand size were the main factors that explained the compositional variation in plant communities. The results indicate that (1) the structural, spatial, and topographical characteristics of the forest stands have the greatest effect on diversity patterns, (2) forests in landscapes that have different land use histories are environmentally heterogeneous and, therefore, can experience high levels of compositional differentiation, even at local scales (e.g., within the same stand). Maintaining habitat heterogeneity at multiple spatial scales should be considered in the development of management plans for enhancing plant diversity and related functions in human-altered forests
Resumo:
Las comunicaciones inalámbricas han transformado profundamente la forma en la que la gente se comunica en el día a día y es, sin lugar a dudas, una de las tecnologías de nuestro tiempo que más rápidamente evoluciona. Este rápido crecimiento implica retos enormes en la tecnología subyacente, debido y entre otros motivos, a la gran demanda de capacidad de los nuevos servicios inalámbricos. Los sistemas Multiple Input Multiple Output (MIMO) han despertado mucho interés como medio de mejorar el rendimiento global del sistema, satisfaciendo de este modo y en cierta medida los nuevo requisitos exigidos. De hecho, el papel relevante de esta tecnología en los actuales esfuerzos de estandarización internacionales pone de manifiesto esta utilidad. Los sistemas MIMO sacan provecho de los grados de libertad espaciales, disponibles a través del entorno multitrayecto, para mejorar el rendimiento de la comunicación con una destacable eficiencia espectral. Con el fin de alcanzar esta mejora en el rendimiento, la diversidad espacial y por diagrama han sido empleadas tradicionalmente para reducir la correlación entre los elementos radiantes, ya que una correlación baja es condición necesaria, si bien no suficiente, para dicha mejora. Tomando como referencia, o punto de partida, las técnicas empleadas para obtener diversidad por diagrama, esta tesis doctoral surge de la búsqueda de la obtención de diversidad por diagrama y/o multiplexación espacial a través del comportamiento multimodal de la antena microstrip, proponiendo para ello un modelo cuasi analítico original para el análisis y diseño de antenas microstrip multipuerto, multimodo y reconfigurables. Este novedoso enfoque en este campo, en vez de recurrir a simulaciones de onda completa por medio de herramientas comerciales tal y como se emplea en las publicaciones existentes, reduce significativamente el esfuerzo global de análisis y diseño, en este último caso por medio de guías de diseño generales. Con el fin de lograr el objetivo planteado y después de una revisión de los principales conceptos de los sistemas MIMO que se emplearán más adelante, se fija la atención en encontrar, implementar y verificar la corrección y exactitud de un modelo analítico que sirva de base sobre la cual añadir las mejoras necesarias para obtener las características buscadas del modelo cuasi analítico propuesto. Posteriormente y partiendo del modelo analítico base seleccionado, se exploran en profundidad y en diferentes entornos multitrayecto, las posibilidades en cuanto a rendimiento se refiere de diversidad por diagrama y multiplexación espacial, proporcionadas por el comportamiento multimodal de las antenas parche microstrip sin cargar. Puesto que cada modo de la cavidad tiene su propia frecuencia de resonancia, es necesario encontrar formas de desplazar la frecuencia de resonancia de cada modo empleado para ubicarlas en la misma banda de frecuencia, manteniendo cada modo al mismo tiempo tan independiente como sea posible. Este objetivo puede lograrse cargando adecuadamente la cavidad con cargas reactivas, o alterando la geometría del parche radiante. Por consiguiente, la atención en este punto se fija en el diseño, implementación y verificación de un modelo cuasi analítico para el análisis de antenas parche microstrip multipuerto, multimodo y cargadas que permita llevar a cabo la tarea indicada, el cuál es una de las contribuciones principales de esta tesis doctoral. Finalmente y basándose en el conocimiento adquirido a través del modelo cuasi analítico, se proporcionan y aplican guías generales para el diseño de antenas microstrip multipuerto, multimodo y reconfigurables para sistemas MIMO, con el fin de mejorar su diversidad por diagrama y/o su capacidad por medio del comportamiento multimodal de las antenas parche microstrip. Se debe destacar que el trabajo presentado en esta tesis doctoral ha dado lugar a una publicación en una revista técnica internacional de un alto factor de impacto. De igual manera, el trabajo también ha sido presentado en algunas de las más importantes conferencias internacionales en el ámbito de las antenas ABSTRACT Wireless communications have deeply transformed the way people communicate on daily basis and it is undoubtedly one of the most rapidly evolving technologies of our time. This fast growing behaviour involves huge challenges on the bearing technology, due to and among others reasons, the high demanding capacity of new wireless services. MIMO systems have given rise to considerable interest as a means to enhance the overall system performance, thus satisfying somehow the new demanding requirements. Indeed, the significant role of this technology on current international standardization efforts, highlights this usefulness. MIMO systems make profit from the spatial degrees of freedom available through the multipath scenario to improve the communication performance with a remarkable spectral efficiency. In order to achieve this performance improvement, spatial and pattern diversity have been traditionally used to decrease the correlation between antenna elements, as low correlation is a necessary but not sufficient condition. Taking as a reference, or starting point, the techniques used to achieve pattern diversity, this Philosophiae Doctor (Ph.D.) arises from the pursuit of obtaining pattern diversity and/or spatial multiplexing capabilities through the multimode microstrip behaviour, thus proposing a novel quasi analytical model for the analysis and design of reconfigurable multimode multiport microstrip antennas. This innovative approach on this field, instead of resorting to full-wave simulations through commercial tools as done in the available publications, significantly reduces the overall analysis and design effort, in this last case through comprehensive design guidelines. In order to achieve this goal and after a review of the main concepts of MIMO systems which will be followed used, the spotlight is fixed on finding, implementing and verifying the correctness and accuracy of a base quasi analytical model over which add the necessary enhancements to obtain the sought features of the quasi analytical model proposed. Afterwards and starting from the base quasi analytical model selected, the pattern diversity and spatial multiplexing performance capabilities provided by the multimode behaviour of unloaded microstrip patch antennas under different multipath environments are fully explored. As each cavity mode has its own resonant frequency, it is required to find ways to displace the resonant frequency of each used mode to place them at the same frequency band while keeping each mode as independent as possible. This objective can be accomplished with an appropriate loading of the cavity with reactive loads, or through the alteration of the geometry of the radiation patch. Thus, the focus is set at this point on the design, implementation and verification of a quasi analytical model for the analysis of loaded multimode multiport microstrip patch antennas to carry out the aforementioned task, which is one of the main contributions of this Ph.D. Finally and based on the knowledge acquired through the quasi analytical model, comprehensive guidelines to design reconfigurable multimode MIMO microstrip antennas to improve the spatial multiplexing and/or diversity system performance by means of the multimode microstrip patch antenna behaviour are given and applied. It shall be highlighted that the work presented in this Ph.D. has given rise to a publication in an international technical journal of high impact factor. Moreover, the work has also been presented at some of the most important international conferences in antenna area.
Resumo:
The cyclin-dependent kinase (Cdk) inhibitor p21Waf1/Cip1/Sdi1, important for p53-dependent cell cycle control, mediates G1/S arrest through inhibition of Cdks and possibly through inhibition of DNA replication. Cdk inhibition requires a sequence of approximately 60 amino acids within the p21 NH2 terminus. We show, using proteolytic mapping, circular dichroism spectropolarimetry, and nuclear magnetic resonance spectroscopy, that p21 and NH2-terminal fragments that are active as Cdk inhibitors lack stable secondary or tertiary structure in the free solution state. In sharp contrast to the disordered free state, however, the p21 NH2 terminus adopts an ordered stable conformation when bound to Cdk2, as shown directly by NMR spectroscopy. We have, thus, identified a striking disorder-order transition for p21 upon binding to one of its biological targets, Cdk2. This structural transition has profound implications in light of the ability of p21 to bind and inhibit a diverse family of cyclin-Cdk complexes, including cyclin A-Cdk2, cyclin E-Cdk2, and cyclin D-Cdk4. Our findings suggest that the flexibility, or disorder, of free p21 is associated with binding diversity and offer insights into the role for structural disorder in mediating binding specificity in biological systems. Further, these observations challenge the generally accepted view of proteins that stable secondary and tertiary structure are prerequisites for biological activity and suggest that a broader view of protein structure should be considered in the context of structure-activity relationships.
Resumo:
Aims The relationship between biodiversity and ecosystem functioning is among the most active areas of ecological research. Furthermore, enhancing the diversity of degraded ecosystems is a major goal in applied restoration ecology. In grasslands, many species may be locally absent due to dispersal or microsite limitation and may therefore profit from mechanical disturbance of the resident vegetation. We established a seed addition and disturbance experiment across several grassland sites of different land use to test whether plant diversity can be increased in these grasslands. Additionally, the experiment will allow us testing the consequences of increased plant diversity for ecosystem processes and for the diversity of other taxa in real-world ecosystems. Here we present details of the experimental design and report results from the first vegetation survey one year after disturbance and seed addition. Moreover, we tested whether the effects of seed addition and disturbance varied among grassland depending on their land use or pre-disturbance plant diversity. Methods A full-factorial experiment was installed in 73 grasslands in three regions across Germany. Grasslands were under regular agricultural use, but varied in the type and the intensity of management, thereby representing the range of management typical for large parts of Central Europe. The disturbance treatment consisted of disturbing the top 10 cm of the sward using a rotavator or rotary harrow. Seed addition consisted of sowing a high-diversity seed mixture of regional plant species. These species were all regionally present, but often locally absent, depending on the resident vegetation composition and richness of each grassland. Important findings One year after sward disturbance it had significantly increased cover of bare soil, seedling species richness and numbers of seedlings. Seed addition had increased plant species richness, but only in combination with sward disturbance. The increase in species richness, when both seed addition and disturbance was applied, was higher at high land-use intensity and low resident diversity. Thus, we show that at least the early recruitment of many species is possible also at high land-use intensity, indicating the potential to restore and enhance biodiversity of species-poor agricultural grasslands. Our newly established experiment provides a unique platform for broad-scale research on the land-use dependence of future trajectories of vegetation diversity and composition and their effects on ecosystem functioning.
Resumo:
Species distribution patterns in planktonic foraminiferal assemblages are fundamental to the understanding of the determinants of their ecology. Until now, data used to identify such distribution patterns was mainly acquired using the standard >150 µm sieve size. However, given that assemblage shell size-range in planktonic foraminifera is not constant, this data acquisition practice could introduce artefacts in the distributional data. Here, we investigated the link between assemblage shell size-range and diversity in Recent planktonic foraminifera by analysing multiple sieve-size fractions in 12 samples spanning all bioprovinces of the Atlantic Ocean. Using five diversity indices covering various aspects of community structure, we found that counts from the >63 µm fraction in polar oceans and the >125 µm elsewhere sufficiently approximate maximum diversity in all Recent assemblages. Diversity values based on counts from the >150 µm fraction significantly underestimate maximum diversity in the polar and surprisingly also in the tropical provinces. Although the new methodology changes the shape of the diversity/sea-surface temperature (SST) relationship, its strength appears unaffected. Our analysis reveals that increasing diversity in planktonic foraminiferal assemblages is coupled with a progressive addition of larger species that have distinct, offset shell-size distributions. Thus, the previously documented increase in overall assemblage shell size-range towards lower latitudes is linked to an expanding shell-size disparity between species from the same locality. This observation supports the idea that diversity and shell size-range disparity in foraminiferal assemblages are the result of niche separation. Increasing SST leads to enhanced surface water stratification and results in vertical niche separation, which permits ecological specialisation. Specific deviations from the overall diversity and shell-size disparity latitudinal pattern are seen in regions of surface-water instability, indicating that coupled shell-size and diversity measurements could be used to reconstruct water column structures of past oceans.