800 resultados para Multicriteria Decision Support System
Resumo:
Crop simulation models allow analyzing various tillage-rotation combinations and exploring management scenarios. This study was conducted to test the DSSAT (Decision Support System for Agrotechnology Transfer) modelling system in rainfed semiarid central Spain. The focus is on the combined effect of tillage system and winter cereal-based rotations (cereal/legume/fallow) on the crop yield and soil quality. The observed data come from a 16-year field experiment. The CERES and CROPGRO models, included in DSSAT v4.5, were used to simulate crop growth and yield, and DSSAT- CENTURY was used in the soil organic carbon (SOC) and soil nitrogen (SN) simulations. Genetic coefficients were calibrated using part of the observed data. Field observations showed that barley grain yield was lower for continuous cereal (BB) than for vetch (VB) and fallow (FB) rotations for both tillage systems. The CERES-Barley model also reflected this trend. The model predicted higher yield in the conventional tillage (CT) than in the no tillage (NT) probably due to the higher nitrogen availability in the CT, shown in the simulations. The SOC and SN in the top layer only, were higher in NT than in CT, and decreased with depth in both simulated and observed values. These results suggest that CT-VB and CT-FB were the best combinations for the dry land conditions studied. However, CT presented lower SN and SOC content than NT. This study shows how models can be a useful tool for assessing and predicting crop growth and yield, under different management systems and under specific edapho-climatic conditions. Additional key words: CENTURY model; CERES-Barley; crop simulation models; DSSAT; sequential simula- tion; soil organic carbon.
Resumo:
Este proyecto se basa en el sistema JRodos de ayuda a la toma de decisiones en tiempo real en caso de emergencias nucleares y radiológicas. Tras una breve descripción del mismo, se presentan los modelos de cálculo que utiliza el sistema y la organización modular en la que se estructura el programa. Concretamente este documento se centra en un módulo desarrollado recientemente denominado ICRP y caracterizado por tener en cuenta todas las vías de exposición a la contaminación radiológica, incluida la vía de la ingestión que no se había tenido en cuenta en los módulos previos. Este modelo nuevo utiliza resultados obtenidos a partir de la cadena de escala local LSMC como datos de entrada, por lo que se lleva a cabo una descripción detalla del funcionamiento y de la ejecución tanto del módulo ICRP como de la cadena previa LSMC. Finalmente, se ejecuta un ejercicio ICRP usando los datos meteorológicos y de término fuentes reales que se utilizaron en el simulacro CURIEX 2013 realizado en el mes de noviembre de 2013 en la Central Nuclear de Almaraz. Se presenta paso a paso la ejecución de este ejercicio y posteriormente se analizan y explican los resultados obtenidos acompañados de elementos visuales proporcionados por el programa. This project is based on the real time online decision support system for nuclear emergency management called JRodos. After a brief description of it, the calculation models used by the system and its modular organization are presented. In particular, this paper focuses on a newly developed module named ICRP. This module is characterized by the consideration of the fact that all terrestrial exposure pathways, including ingestion, which has not been considered in previous modules. This new model uses the results obtained in a previous local scale model chain called LSMC as input. In this document a detailed description of the operation and implementation of both the ICRP module and its previous LSMC chain is presented. To conclude, an ICRP exercise is performed with real meteorological and source term data used in the simulation exercise CURIEX 2013 carried out in the Almaraz Nuclear Power Plant in November 2013. A stepwise realization of this exercise is presented and subsequently the results are deeply explained and analyzed supplemented with illustrations provided by the program.
Resumo:
Cognitive rehabilitation aims to remediate or alleviate the cognitive deficits appearing after an episode of acquired brain injury (ABI). The purpose of this work is to describe the telerehabilitation platform called Guttmann Neuropersonal Trainer (GNPT) which provides new strategies for cognitive rehabilitation, improving efficiency and access to treatments, and to increase knowledge generation from the process. A cognitive rehabilitation process has been modeled to design and develop the system, which allows neuropsychologists to configure and schedule rehabilitation sessions, consisting of set of personalized computerized cognitive exercises grounded on neuroscience and plasticity principles. It provides remote continuous monitoring of patient's performance, by an asynchronous communication strategy. An automatic knowledge extraction method has been used to implement a decision support system, improving treatment customization. GNPT has been implemented in 27 rehabilitation centers and in 83 patients' homes, facilitating the access to the treatment. In total, 1660 patients have been treated. Usability and cost analysis methodologies have been applied to measure the efficiency in real clinical environments. The usability evaluation reveals a system usability score higher than 70 for all target users. The cost efficiency study results show a relation of 1-20 compared to face-to-face rehabilitation. GNPT enables brain-damaged patients to continue and further extend rehabilitation beyond the hospital, improving the efficiency of the rehabilitation process. It allows customized therapeutic plans, providing information to further development of clinical practice guidelines.
Resumo:
The CENTURY soil organic matter model was adapted for the DSSAT (Decision Support System for Agrotechnology Transfer), modular format in order to better simulate the dynamics of soil organic nutrient processes (Gijsman et al., 2002). The CENTURY model divides the soil organic carbon (SOC) into three hypothetical pools: microbial or active material (SOC1), intermediate (SOC2) and the largely inert and stable material (SOC3) (Jones et al., 2003). At the beginning of the simulation, CENTURY model needs a value of SOC3 per soil layer which can be estimated by the model (based on soil texture and management history) or given as an input. Then, the model assigns about 5% and 95% of the remaining SOC to SOC1 and SOC2, respectively. The model performance when simulating SOC and nitrogen (N) dynamics strongly depends on the initialization process. The common methods (e.g. Basso et al., 2011) to initialize SOC pools deal mostly with carbon (C) mineralization processes and less with N. Dynamics of SOM, SOC, and soil organic N are linked in the CENTURY-DSSAT model through the C/N ratio of decomposing material that determines either mineralization or immobilization of N (Gijsman et al., 2002). The aim of this study was to evaluate an alternative method to initialize the SOC pools in the DSSAT-CENTURY model from apparent soil N mineralization (Napmin) field measurements by using automatic inverse calibration (simulated annealing). The results were compared with the ones obtained by the iterative initialization procedure developed by Basso et al., 2011.
Resumo:
Large-scale circulations patterns (ENSO, NAO) have been shown to have a significant impact on seasonal weather, and therefore on crop yield over many parts of the world(Garnett and Khandekar, 1992; Aasa et al., 2004; Rozas and Garcia-Gonzalez, 2012). In this study, we analyze the influence of large-scale circulation patterns and regional climate on the principal components of maize yield variability in Iberian Peninsula (IP) using reanalysis datasets. Additionally, we investigate the modulation of these relationships by multidecadal patterns. This study is performed analyzing long time series of maize yield, only climate dependent, computed with the crop model CERES-maize (Jones and Kiniry, 1986) included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5).
Resumo:
Este trabalho teve por objetivo o desenvolvimento de uma proposta de um modelo de sistema de apoio à decisão em vendas e sua aplicação. O levantamento sobre o perfil das vendas no mercado corporativo - de empresas-para-empresas, as técnicas de vendas, informações necessárias para a realização de uma venda eficiente, tal qual o controle das ações e resultados dos vendedores com a ajuda de relatórios, tudo isso aliado às tecnologias de data warehouse, data mart, OLAP foram essenciais na elaboração de uma proposta de modelo genérico e sua implantação. Esse modelo genérico foi aplicado levando-se em conta uma editora de listas e guias telefônicos hipotética, e foi construído buscando-se suprir os profissionais de vendas com informações que poderão melhorar a efetividade de suas vendas e dar-lhes maior conhecimento sobre seus produtos, clientes, usuários de listas e o mercado como um todo, além de suprir os gerentes de uma ferramenta rápida e confiável de auxílio à análise e coordenação dos esforços de vendas. A possibilidade de visualização rápida, confiável e personalizada das diversas informações permitidas por esse sistema, tal qual o êxito em responder às perguntas de pesquisas apresentadas no trabalho, comprova que essa aplicação poderá ser útil à empresa e em específico aos profissionais de vendas e gerentes tomadores de decisão.
Resumo:
Researchers and extension officers collaborated with farmers in addressing peanut cropping and sowing decisions using on-farm experiments and cropping systems simulation in the Pollachi region of Tamil Nadu, India. The most influential variable affecting the peanut productivity in this irrigated region regard sowing date. During the 1998-1999 rabi (post rainy) season, three farmers fields in villages in Pollachi region were selected and monitored. The APSIM model was used to simulate the effect of sowing date. The APSIM-Peanut module simulation demonstrated close correspondence with the field observation in predicting yield. The model predicted that December sowing resulted in higher yield than January sowing due to longer pod filling period, and this was confirmed by farmer experience. The farmers and extension officers became comfortable with their role as owners of the collaborative experiments and custodians of the learning environment.
Resumo:
Conventional project management techniques are not always sufficient for ensuring time, cost and quality achievement of large-scale construction projects due to complexity in planning and implementation processes. The main reasons for project non-achievement are changes in scope and design, changes in Government policies and regulations, unforeseen inflation) under-estimation and improper estimation. Projects that are exposed to such an uncertain environment can be effectively managed with the application of risk numagement throughout project life cycle. However, the effectiveness of risk management depends on the technique in which the effects of risk factors are analysed and! or quantified. This study proposes Analytic Hierarchy Process (AHP), a multiple attribute decision-making technique as a tool for risk analysis because it can handle subjective as well as objective factors in decision model that are conflicting in nature. This provides a decision support system (DSS) to project managenumt for making the right decision at the right time for ensuring project success in line with organisation policy, project objectives and competitive business environment. The whole methodology is explained through a case study of a cross-country petroleum pipeline project in India and its effectiveness in project1nana.gement is demonstrated.
Resumo:
This paper presents a Decision Support System framework based on Constrain Logic Programming and offers suggestions for using RFID technology to improve several of the critical procedures involved. This paper suggests that a widely distributed and semi-structured network of waste producing and waste collecting/processing enterprises can improve their planning both by the proposed Decision Support System, but also by implementing RFID technology to update and validate information in a continuous manner. © 2010 IEEE.
Resumo:
Many local authorities (LAs) are currently working to reduce both greenhouse gas emissions and the amount of municipal solid waste (MSW) sent to landfill. The recovery of energy from waste (EfW) can assist in meeting both of these objectives. The choice of an EfW policy combines spatial and non-spatial decisions which may be handled using Multi-Criteria Analysis (MCA) and Geographic Information Systems (GIS). This paper addresses the impact of transporting MSW to EfW facilities, analysed as part of a larger decision support system designed to make an overall policy assessment of centralised (large-scale) and distributed (local-scale) approaches. Custom-written ArcMap extensions are used to compare centralised versus distributed approaches, using shortest-path routing based on expected road speed. Results are intersected with 1-kilometre grids and census geographies for meaningful maps of cumulative impact. Case studies are described for two counties in the United Kingdom (UK); Cornwall and Warwickshire. For both case study areas, centralised scenarios generate more traffic, fuel costs and emitted carbon per tonne of MSW processed.
Resumo:
This thesis presents an investigation into the application of methods of uncertain reasoning to the biological classification of river water quality. Existing biological methods for reporting river water quality are critically evaluated, and the adoption of a discrete biological classification scheme advocated. Reasoning methods for managing uncertainty are explained, in which the Bayesian and Dempster-Shafer calculi are cited as primary numerical schemes. Elicitation of qualitative knowledge on benthic invertebrates is described. The specificity of benthic response to changes in water quality leads to the adoption of a sensor model of data interpretation, in which a reference set of taxa provide probabilistic support for the biological classes. The significance of sensor states, including that of absence, is shown. Novel techniques of directly eliciting the required uncertainty measures are presented. Bayesian and Dempster-Shafer calculi were used to combine the evidence provided by the sensors. The performance of these automatic classifiers was compared with the expert's own discrete classification of sampled sites. Variations of sensor data weighting, combination order and belief representation were examined for their effect on classification performance. The behaviour of the calculi under evidential conflict and alternative combination rules was investigated. Small variations in evidential weight and the inclusion of evidence from sensors absent from a sample improved classification performance of Bayesian belief and support for singleton hypotheses. For simple support, inclusion of absent evidence decreased classification rate. The performance of Dempster-Shafer classification using consonant belief functions was comparable to Bayesian and singleton belief. Recommendations are made for further work in biological classification using uncertain reasoning methods, including the combination of multiple-expert opinion, the use of Bayesian networks, and the integration of classification software within a decision support system for water quality assessment.
Resumo:
Hierarchical knowledge structures are frequently used within clinical decision support systems as part of the model for generating intelligent advice. The nodes in the hierarchy inevitably have varying influence on the decisionmaking processes, which needs to be reflected by parameters. If the model has been elicited from human experts, it is not feasible to ask them to estimate the parameters because there will be so many in even moderately-sized structures. This paper describes how the parameters could be obtained from data instead, using only a small number of cases. The original method [1] is applied to a particular web-based clinical decision support system called GRiST, which uses its hierarchical knowledge to quantify the risks associated with mental-health problems. The knowledge was elicited from multidisciplinary mental-health practitioners but the tree has several thousand nodes, all requiring an estimation of their relative influence on the assessment process. The method described in the paper shows how they can be obtained from about 200 cases instead. It greatly reduces the experts’ elicitation tasks and has the potential for being generalised to similar knowledge-engineering domains where relative weightings of node siblings are part of the parameter space.
Resumo:
Purpose – This paper aims to develop an integrated analytical approach, combining quality function deployment (QFD) and analytic hierarchy process (AHP) approach, to enhance the effectiveness of sourcing decisions. Design/methodology/approach – In the approach, QFD is used to translate the company stakeholder requirements into multiple evaluating factors for supplier selection, which are used to benchmark the suppliers. AHP is used to determine the importance of evaluating factors and preference of each supplier with respect to each selection criterion. Findings – The effectiveness of the proposed approach is demonstrated by applying it to a UK-based automobile manufacturing company. With QFD, the evaluating factors are related to the strategic intent of the company through the involvement of concerned stakeholders. This ensures successful strategic sourcing. The application of AHP ensures consistent supplier performance measurement using benchmarking approach. Research limitations/implications – The proposed integrated approach can be principally adopted in other decision-making scenarios for effective management of the supply chain. Practical implications – The proposed integrated approach can be used as a group-based decision support system for supplier selection, in which all relevant stakeholders are involved to identify various quantitative and qualitative evaluating criteria, and their importance. Originality/value – Various approaches that can deal with multiple and conflicting criteria have been adopted for the supplier selection. However, they fail to consider the impact of business objectives and the requirements of company stakeholders in the identification of evaluating criteria for strategic supplier selection. The proposed integrated approach outranks the conventional approaches to supplier selection and supplier performance measurement because the sourcing strategy and supplier selection are derived from the corporate/business strategy.
Resumo:
The Semantic Web relies on carefully structured, well defined, data to allow machines to communicate and understand one another. In many domains (e.g. geospatial) the data being described contains some uncertainty, often due to incomplete knowledge; meaningful processing of this data requires these uncertainties to be carefully analysed and integrated into the process chain. Currently, within the SemanticWeb there is no standard mechanism for interoperable description and exchange of uncertain information, which renders the automated processing of such information implausible, particularly where error must be considered and captured as it propagates through a processing sequence. In particular we adopt a Bayesian perspective and focus on the case where the inputs / outputs are naturally treated as random variables. This paper discusses a solution to the problem in the form of the Uncertainty Markup Language (UncertML). UncertML is a conceptual model, realised as an XML schema, that allows uncertainty to be quantified in a variety of ways i.e. realisations, statistics and probability distributions. UncertML is based upon a soft-typed XML schema design that provides a generic framework from which any statistic or distribution may be created. Making extensive use of Geography Markup Language (GML) dictionaries, UncertML provides a collection of definitions for common uncertainty types. Containing both written descriptions and mathematical functions, encoded as MathML, the definitions within these dictionaries provide a robust mechanism for defining any statistic or distribution and can be easily extended. Universal Resource Identifiers (URIs) are used to introduce semantics to the soft-typed elements by linking to these dictionary definitions. The INTAMAP (INTeroperability and Automated MAPping) project provides a use case for UncertML. This paper demonstrates how observation errors can be quantified using UncertML and wrapped within an Observations & Measurements (O&M) Observation. The interpolation service uses the information within these observations to influence the prediction outcome. The output uncertainties may be encoded in a variety of UncertML types, e.g. a series of marginal Gaussian distributions, a set of statistics, such as the first three marginal moments, or a set of realisations from a Monte Carlo treatment. Quantifying and propagating uncertainty in this way allows such interpolation results to be consumed by other services. This could form part of a risk management chain or a decision support system, and ultimately paves the way for complex data processing chains in the Semantic Web.