971 resultados para Multi-nitrogen heterocyclic metal complexes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel organic-inorganic hybrid compound {[Cu (2, 2'-bpy)(2)](2)Mo8O26} has been hydrothermally Synthesized and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in the orthorhombic space group, Pna2(1), with a=2.4164 (5), b=1.8281 (4), c=1.1877 (2) nm, V=5.247(2) nm(3), Z=4, and final R-1=0.0331, wR(2)=0.0727. The structure consists of discrete {[Cu(2,2'-bpy)(2)](2)Mo8O26} clusters, constructed from a beta -octamolybdate subunit[Mo8O26](4-) covalently bonded to two [Cu(2,2'-bpy)(2)](2+) coordination complex cations via bridging oxo groups. In addition, the spectroscopic properties and thermal behavior of this compound have been investigated by spectroscopic techniques (UV-vis, IR, Raman and EPR spectra) and TG analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two novel electrochemiluminescent labels, bis(2,2'-bipyridine)[5-(3-carboxylic acid-propionamido)1,10-phenanthroline]ruthenium(II) hexafluorophosphate dihydrate and bis(2,2'-bipyridine)[5-(4-carboxylic acid-butanamido)-1,10-phenanthroline]ruthenium(II) hexafluorophosphate dihydrate, were synthesized and confirmed by IRelemental analysis, and H-1-NMR spectra were completely assigned using the (HH)-H-1-H-1 COSY technique. Cyclic voltammograms with different scan rates showed quasireversible electrochemical behaviour of the two Ru (II) complex labels in MeCN solution. Electronic absorption, photoluminescence and electrochemiluminescence of Ru(II) complexes were also characterized. Copyright (C) 2000 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorbed kinetics, proton transportation in electrochemical redox process of 4-pyridyl hydroquinone (4PHQ) self-assembled monolayer (SAM) modified Pt electrode were studied by electrochemical quartz crystal microbalance (EQCM) in situ. It proved that the electrode was modified by a monolayer and underwent a rapid electron transfer. It was a slow adsorbed kinetic process. The ion transfer in the electrochemical redox at the SAM-modified electrode surface mainly involved into the hydrate hydrogen ion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Zn(C12H8N2)2(H2O)2]SO4.6H2O, M(r) = 665.98, triclinic, P1BAR, a = 10.070 (4), b = 12.280 (3), c = 13.358 (2) angstrom, alpha = 109.12 (2), beta = 92.58 (2), gamma = 110.85 (2)-degrees, V = 1433.9 (7) angstrom 3, Z = 2, D(x) = 1.54 g cm-3, lambda(Mo K-alpha) = 0.71069 angstrom, mu = 10.1 cm-1, F(000) = 692, T = 293 K, R = 0.044 for 3985 observed reflections. The Zn atom is coordinated in a distorted octahedral geometry by four N atoms from two 1,10-phenanthroline (phen) ligands and two water molecules. The intermolecular ring-stacking interactions between the phen ligands occur in two forms: infinite chains and discrete dimers. Hydrogen bonds further stabilize the structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation and the behaviour of a Prussian Blue (PB) film on a platinum microdisk electrode has been described. Electrocatalytic oxidation of ascorbic acid has occurred at the PB film modified microelectrode. This shows a typical example of a modified microelectrode in electrocatalysis following our previous theoretical studies (J. Electroanal. Chem., 309 (1991) 103) and the related catalytic reaction rate constant was determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the interactions between the atoms of An, Ag and Cu and clean Si(111) surface, two types of silicon clusters Si4H7 and Si16H20 together with their metal complexes were studied by using hybrid (U)B3LYP density functional theory method. Optimized geometries and energies on different adsorption sites indicate that: (1) the binding energies at different adsorption sites are large (ranging from similar to 1.2 to 2.6 eV depend on the metal atoms and adsorption sites), suggesting a strong interaction between metal atom and silicon surface; (2) the most favorable adsorption site is the on top (T) site. Mulliken population analysis indicated that in the system of on top (T) site, a covalent bond is formed between metal atom and dangling bond of surface Si atom. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin film dielectrics based on titanium, zirconium or hafnium oxides are being introduced to increase the permittivity of insulating layers in transistors for micro/nanoelectronics and memory devices. Atomic layer deposition (ALD) is the process of choice for fabricating these films, as it allows for high control of composition and thickness in thin, conformal films which can be deposited on substrates with high aspect-ratio features. The success of this method depends crucially on the chemical properties of the precursor molecules. A successful ALD precursor should be volatile, stable in the gas-phase, but reactive on the substrate and growing surface, leading to inert by-products. In recent years, many different ALD precursors for metal oxides have been developed, but many of them suffer from low thermal stability. Much promise is shown by group 4 metal precursors that contain cyclopentadienyl (Cp = C5H5-xRx) ligands. One of the main advantages of Cp precursors is their thermal stability. In this work ab initio calculations were carried out at the level of density functional theory (DFT) on a range of heteroleptic metallocenes [M(Cp)4-n(L)n], M = Hf/Zr/Ti, L = Me and OMe, in order to find mechanistic reasons for their observed behaviour during ALD. Based on optimized monomer structures, reactivity is analyzed with respect to ligand elimination. The order in which different ligands are eliminated during ALD follows their energetics which was in agreement with experimental measurements. Titanocene-derived precursors, TiCp*(OMe)3, do not yield TiO2 films in atomic layer deposition (ALD) with water, while Ti(OMe)4 does. DFT was used to model the ALD reaction sequence and find the reason for the difference in growth behaviour. Both precursors adsorb initially via hydrogen-bonding. The simulations reveal that the Cp* ligand of TiCp*(OMe)3 lowers the Lewis acidity of the Ti centre and prevents its coordination to surface O (densification) during both of the ALD pulses. Blocking this step hindered further ALD reactions and for that reason no ALD growth is observed from TiCp*(OMe)3 and water. The thermal stability in the gas phase of Ti, Zr and Hf precursors that contain cyclopentadienyl ligands was also considered. The reaction that was found using DFT is an intramolecular α-H transfer that produces an alkylidene complex. The analysis shows that thermal stabilities of complexes of the type MCp2(CH3)2 increase down group 4 (M = Ti, Zr and Hf) due to an increase in the HOMO-LUMO band gap of the reactants, which itself increases with the electrophilicity of the metal. The reverse reaction of α-hydrogen abstraction in ZrCp2Me2 is 1,2-addition reaction of a C-H bond to a Zr=C bond. The same mechanism is investigated to determine if it operates for 1,2 addition of the tBu C-H across Hf=N in a corresponding Hf dimer complex. The aim of this work is to understand orbital interactions, how bonds break and how new bonds form, and in what state hydrogen is transferred during the reaction. Calculations reveal two synchronous and concerted electron transfers within a four-membered cyclic transition state in the plane between the cyclopentadienyl rings, one π(M=X)-to-σ(M-C) involving metal d orbitals and the other σ(C-H)-to-σ(X-H) mediating the transfer of neutral H, where X = C or N. The reaction of the hafnium dimer complex with CO that was studied for the purpose of understanding C-H bond activation has another interesting application, namely the cleavage of an N-N bond and resulting N-C bond formation. Analysis of the orbital plots reveals repulsion between the occupied orbitals on CO and the N-N unit where CO approaches along the N-N axis. The repulsions along the N-N axis are minimized by instead forming an asymmetrical intermediate in which CO first coordinates to one Hf and then to N. This breaks the symmetry of the N-N unit and the resultant mixing of MOs allows σ(NN) to be polarized, localizing electrons on the more distant N. This allowed σ(CO) and π(CO) donation to N and back-donation of π*(Hf2N2) to CO. Improved understanding of the chemistry of metal complexes can be gained from atomic-scale modelling and this provides valuable information for the design of new ALD precursors. The information gained from the model decomposition pathway can be additionally used to understand the chemistry of molecules in the ALD process as well as in catalytic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes modelling, synthesis, spectroscopic and physical characterisation, as well as application of Magnesium, Calcium and Copper β-diketonate, β-ketoiminate, β-diiminate, Schiff base, amide and fluorenyl compounds. The selected compounds could potentially find application in materials deposition using Atomic Layer Deposition (ALD), MOCVD, CVD and Sol-Gel techniques. Quantum chemical modelling was used as a tool to perform the comprehensive and rapid study of magnesium and calcium precursor molecules in order to predict which of them would be more successful in ALD of metal oxides. Precursor chemistry plays a key role in ALD, since precursors must be volatile, thermally stable, chemisorb on the surface and react rapidly with existing surface groups. This Thesis describes one aspect of this, surface reactivity between ligands and hydroxyl groups, via a gas-phase model with energetics computed at the level of Density Functional Theory (DFT). A number of different synthetic strategies, both aerobic and anaerobic, were investigated for the synthesis of the described metal complexes. These included the use of different metal starting reagents such as, anhydrous and hydrated inorganic metal salts, metal alkyls and Grignard reagents. Some of previously unreported metal complexes of homoleptic and heteroleptic magnesium, calcium and copper β-diketonates, β-ketoiminates, β-diiminates, amides and Schiff base type were synthesised and characterised: [Mg(hfpd)2(DipPa)], [Mg(hfpd)2(MapH)2], [Mg(hf-ebp)(THF)2], [Mg(tf-Pap)Cl(THF)2], [Ca(PhNacnac)2], [Cu(tf-Pap)2], [Cu(PhNacnac)2], [Cu(hf-ebp)], [Cu(DipPa)] and [Cu(DipPa)2(4,4’-bypy)]. A comprehensive study on the thermal properties of magnesium, calcium and copper β-diketonates, β-ketoiminates, β-diiminates, Schiff base, amide and fluorenyl complexes was performed using TGA and sublimation of selected compounds. Atomic Layer Deposition of MgO using magnesium β-ketoiminate – [bis{(4-N-phenyl)-2-pentonato} magnesium] and β-diketonate - [bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato)(THF)magnesium hydrate] was performed on Si(100) substrates at 180°C and 0.2 Torr using O2 plasma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Account describes experimental data used to understand the structure of ionic liquids and solute-solvent interactions of both molecular solutes and dissolved metal complexes. In general, the structures of the ionic liquids determined from experimental data show good agreement with both simulated structures and solid-state structures. For all ionic liquids studied, strong charge ordering is found leading to long-range order even in the presence of a solute. For dissolved metal complexes, the ionic liquid is not innocent and a clear dependence on the speciation is observed with variations in both the cation and anion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of a new bis(2,2-bipyridine), bridged by a Schiff base cyclohexane moiety is described. Surprisingly, this compound does not appear to form discrete oligonuclear metal complexes on the addition of zinc(II) and iron(II) cations. In order to rationalise this behaviour, the compound's conformation has been explored using a combination of circular dichroism, X-ray crystallography and DFT calculations, indicating that at least two energy barriers need to be overcome to orientate the ligand in a suitable conformation to permit the formation of coordination helicates with control over the metal centred stereochemistry. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-Aryl-substituted imidazo[4,5-f]-1,10-phenanthrolines were used as building blocks for metal-containing liquid crystals (metallomesogens). Imidazo[4,5-f]-1,10-phenanthrolines are versatile ligands because they can form stable complexes with various d-block transition metals, including platinum(II) and rhenium(I), as well as with lanthanide(III) and uranyl ions and they can easily be structurally modified by a judicious choice of benzaldehyde precursor. None of the ligands designed for this study were liquid-crystalline. However, mesomorphism could be induced by their coordination to various metallic fragments. The thermal behavior of the metal complexes depended on the metal-to-ligand ratio and the substitution pattern of the coordinating ligands. Complexes with a metal-to-ligand ratio of 1:1 [ML, with M = Pt(II), Re(I)] were not liquid-crystal line. The lanthanide(III) complexes with a metal-to-ligand ratio of 1:2 [ML2 with M = Ln(III)] formed an enantiotropic cubic mesophase or were not liquid-crystalline, depending on the nature of the lanthanide(III) ion and the substitution pattern of the ligands. A 1:3 uranyl complex of the type [ML3](2+) exhibited a hexagonal columnar mesophase over a broad temperature range. Self-assembled monolayers of a europium(III) complex were investigated by scanning tunneling microscopy, which revealed that the complex formed well-ordered structures over long distances at the 1-octanoic acid-graphite interface. The rhenium(I) complexes and the europium(III) complexes with 2-thenoyl-trifluoroacetonate or dibenzoylmethanate and imidazo[4,5-f]-1,10-phenanthroline showed good luminescence properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The composition of a dynamic mixture of similar 2,2'-bipyridine complexes of iron(II) bearing either an amide (5-benzylamido-2,2'-bipyridine and 5-(2-methoxyethane)amido-2,2'-bipyridine) or an ester (2,2'-bipyridine-5-carboxylic acid benzylester and 2,2'-bipyridine-5-carboxylic acid 2-methoxyethane ester) side chain have been evaluated by electrospray mass spectroscopy in acetonitrile. The time taken for the complexes to come to equilibrium appears to be dependent on the counteranion, with chloride causing a rapid redistribution of two preformed heteroleptic complexes (of the order of 1 hour), whereas the time it takes in the presence of tetrafluoroborate salts is in excess of 24^^h. Similarly the final distribution of products is dependent on the anion present, with the presence of chloride, and to a lesser extent bromide, preferring three amide-functionalized ligands, and a slight preference for an appended benzyl over a methoxyethyl group. Furthermore, for the first time, this study shows that the distribution of a dynamic library of metal complexes monitored by ESI-MS can adapt following the introduction of a different anion, in this case tetrabutylammonium chloride to give the most favoured heteroleptic complex despite the increasing ionic strength of the solution. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land application of wastes from concentrated animal feeding operations results in accumulation of copper (Cu) and antimicrobials in terrestrial systems. Interaction between Cu and antimicrobials may change Cu speciation in soil solution, and affect Cu bioavailability and toxicity. In this study, earthworms were exposed to quartz sand percolated with different concentrations of Cu and ciprofloxacin (CIP). Copper uptake by earthworms, its subcellular partition, and toxicity were studied. An increase in the applied CIP decreased the free Cu ion concentration in external solution and mortalities of earthworm, while Cu contents in earthworms increased. Copper and CIP in earthworms were fractionated into five fractions: a granular fraction (D), a fraction consisting of tissue fragments, cell membranes, and intact cells (E), a microsomal fraction (F), a denatured proteins fraction (G), and a heat-stable proteins fraction (H). Most of the CIP in earthworms was in fraction H. Copper was redistributed from the metal-sensitive fraction E to fractions D, F, G, and H with increasing CIP concentration. These results challenge the free ion activity model and suggested that Cu may be partly taken up as Cu-CIP complexes in earthworms, changing the bioavailability, subcellular distribution, and toxicity of Cu to earthworms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The asymmetric Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene and the Mukaiyama-aldol reaction between methylpyruvate and 1-phenyl-1-trimethylsilyloxyethene have been catalysed by heterogeneous copper(II)-bis(oxazoline)-based polymer immobilised ionic liquid phase (PIILP) systems generated from a range of linear and cross linked ionic polymers. In both reactions selectivity and ee were strongly influenced by the choice of polymer. A comparison of the performance of a range of Cu(II)-bis(oxazoline)-PIILP catalyst systems against analogous supported ionic liquid phase (SILP) heterogeneous catalysts as well as their homogeneous counterparts has been undertaken and their relative merits evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of ionic liquids based on Girard's reagents was synthesised. Their tunable thermomorphic behaviour with water was demonstrated, and slight modifications in the cationic structure led to drastic changes in their water miscibility. Their phase behaviour, involving monophasic–biphasic transitions, drove a number of practical applications, including scavenging water-soluble dyes and the extraction of metals from water.