877 resultados para Multi-camera system
Resumo:
A multi-channel gated integrator and PXI based data acquisition system have been developed for nuclear detector arrays with hundreds of detector units. The multi-channel gated integrator can be controlled by a programmable Cl controller. The PXI-DAQ system consists of NI PXI-1033 chassis with several PXI-DAQ cards. The system software has a user-friendly GUI which is written in C language using LabWindows/CVI under Windows XP operating system. The performance of the PXI-DAQ system is very reliable and capable of handling event rate up to 40 kHz. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
snBench is a platform on which novice users compose and deploy distributed Sense and Respond programs for simultaneous execution on a shared, distributed infrastructure. It is a natural imperative that we have the ability to (1) verify the safety/correctness of newly submitted tasks and (2) derive the resource requirements for these tasks such that correct allocation may occur. To achieve these goals we have established a multi-dimensional sized type system for our functional-style Domain Specific Language (DSL) called Sensor Task Execution Plan (STEP). In such a type system data types are annotated with a vector of size attributes (e.g., upper and lower size bounds). Tracking multiple size aspects proves essential in a system in which Images are manipulated as a first class data type, as image manipulation functions may have specific minimum and/or maximum resolution restrictions on the input they can correctly process. Through static analysis of STEP instances we not only verify basic type safety and establish upper computational resource bounds (i.e., time and space), but we also derive and solve data and resource sizing constraints (e.g., Image resolution, camera capabilities) from the implicit constraints embedded in program instances. In fact, the static methods presented here have benefit beyond their application to Image data, and may be extended to other data types that require tracking multiple dimensions (e.g., image "quality", video frame-rate or aspect ratio, audio sampling rate). In this paper we present the syntax and semantics of our functional language, our type system that builds costs and resource/data constraints, and (through both formalism and specific details of our implementation) provide concrete examples of how the constraints and sizing information are used in practice.
Resumo:
Many people suffer from conditions that lead to deterioration of motor control and makes access to the computer using traditional input devices difficult. In particular, they may loose control of hand movement to the extent that the standard mouse cannot be used as a pointing device. Most current alternatives use markers or specialized hardware to track and translate a user's movement to pointer movement. These approaches may be perceived as intrusive, for example, wearable devices. Camera-based assistive systems that use visual tracking of features on the user's body often require cumbersome manual adjustment. This paper introduces an enhanced computer vision based strategy where features, for example on a user's face, viewed through an inexpensive USB camera, are tracked and translated to pointer movement. The main contributions of this paper are (1) enhancing a video based interface with a mechanism for mapping feature movement to pointer movement, which allows users to navigate to all areas of the screen even with very limited physical movement, and (2) providing a customizable, hierarchical navigation framework for human computer interaction (HCI). This framework provides effective use of the vision-based interface system for accessing multiple applications in an autonomous setting. Experiments with several users show the effectiveness of the mapping strategy and its usage within the application framework as a practical tool for desktop users with disabilities.
Resumo:
Cloud services provide its users with flexible resource provisioning. But in the current market, a user has to choose from a limited set of configurations at a fixed price. This paper presents an autonomous negotiation system termed CloudNeg for negotiating cloud services. CloudNeg provides buyers and sellers of cloud services with autonomous agents to negotiate on the specifications of a cloud instance, including price, on their behalf. These agents elicit their buyers’ time preferences and use them in negotiations. Further, this paper presents two artifacts: a negotiation algorithm and a prototype which together form CloudNeg.
Resumo:
In this paper, we propose generalized sampling approaches for measuring a multi-dimensional object using a compact compound-eye imaging system called thin observation module by bound optics (TOMBO). This paper shows the proposed system model, physical examples, and simulations to verify TOMBO imaging using generalized sampling. In the system, an object is modulated and multiplied by a weight distribution with physical coding, and the coded optical signal is integrated on to a detector array. A numerical estimation algorithm employing a sparsity constraint is used for object reconstruction.
Resumo:
A new domain-specific, reconfigurable system-on-a-chip (SoC) architecture is proposed for video motion estimation. This has been designed to cover most of the common block-based video coding standards, including MPEG-2, MPEG-4, H.264, WMV-9 and AVS. The architecture exhibits simple control, high throughput and relatively low hardware cost when compared with existing circuits. It can also easily handle flexible search ranges without any increase in silicon area and can be configured prior to the start of the motion estimation process for a specific standard. The computational rates achieved make the circuit suitable for high-end video processing applications, such as HDTV. Silicon design studies indicate that circuits based on this approach incur only a relatively small penalty in terms of power dissipation and silicon area when compared with implementations for specific standards. Indeed, the cost/performance achieved exceeds that of existing but specific solutions and greatly exceeds that of general purpose field programmable gate array (FPGA) designs.
Resumo:
Screening for residues of anabolic steroids frequently requires extraction from tissues and fluids before analysis. Chemical procedures for these extractions can be complicated, expensive to perform and not ideal for the simultaneous extraction of analytes with different solubilities. Extraction by multi-immunoaffinity chromatography (MIAC) may be used as an alternative. Samples are passed through a column containing a range of antibodies immobilized on an inert support. The desired analytes are bound to their respective antibodies, washed and then eluted by a suitable solvent. The purified extracts can then be incorporated into the analytical tests, The analytes that can be extracted presently are alpha-nortestosterone, zeranol, trenbolone, diethylstilboestrol, boldenone and dexamethasone. Manually, the MIAC procedure is limited to about six columns per operator but bq automating the process using a robotic sample processor (RSP), 48 columns can be run simultaneously during the day or night. The RSP has also been adapted to transfer extracts and reagents on to ELISA plates. The automated system has proved to be a robust and reliable means of screening large numbers of samples for anabolic agents with minimal manual input
Resumo:
We investigate by numerical EM simulation the potential communication channel capacity of a reverberant environment using the time reversal approach, excited at 2.4 GHz by ON-OFF keyed RF pulse excitation. It is shown that approximately 725 1.25MHz propagation channels can be allocated with the cavity contains a 4×4 ? or 1×1 ? LOS obstruction positioned between the transceiver antenna and the time reversal unit. Furthermore the results show that two co-located transceiver dipoles separated by a spacing of 3?/4 can successfully resolve a 10ns pulse. Our findings suggest that different independent channels with identical operating frequency can be realized in an enclosed environment such as ventilation duct or underground tunnel. This suggests that there is a possibility of implementing a parallel channel radio link with the minimum inter-antenna spacing of 3?/4 between the transceivers in a rich multipath environment. © 2012 IEEE.
Resumo:
The presence of paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP) toxins in seafood is a severe and growing threat to human health. In order to minimize the risks of human exposure, the maximum content of these toxins in seafood has been limited by legal regulations worldwide. The regulated limits are established in equivalents of the main representatives of the groups: saxitoxin (STX), okadaic acid (OA) and domoic acid (DA), for PSP, DSP and ASP, respectively. In this study a multi-detection method to screen shellfish samples for the presence of these toxins simultaneously was developed. Multiplexing was achieved using a solid-phase microsphere assay coupled to flow-fluorimetry detection, based on the Luminex xMap technology. The multi-detection method consists of three simultaneous competition immunoassays. Free toxins in solution compete with STX, OA or DA immobilized on the surface of three different classes of microspheres for binding to specific monoclonal antibodies. The IC50 obtained in buffer was similar in single- and multi-detection: 5.6 ± 1.1 ng/mL for STX, 1.1 ± 0.03 ng/mL for OA and 1.9 ± 0.1 ng/mL for DA. The sample preparation protocol was optimized for the simultaneous extraction of STX, OA and DA with a mixture of methanol and acetate buffer. The three immunoassays performed well with mussel and scallop matrixes displaying adequate dynamic ranges and recovery rates (around 90 % for STX, 80 % for OA and 100 % for DA). This microsphere-based multi-detection immunoassay provides an easy and rapid screening method capable of detecting simultaneously in the same sample three regulated groups of marine toxins.
Resumo:
The increased interconnectivity and complexity of supervisory control and data acquisition (SCADA) systems in power system networks has exposed the systems to a multitude of potential vulnerabilities. In this paper, we present a novel approach for a next-generation SCADA-specific intrusion detection system (IDS). The proposed system analyzes multiple attributes in order to provide a comprehensive solution that is able to mitigate varied cyber-attack threats. The multiattribute IDS comprises a heterogeneous white list and behavior-based concept in order to make SCADA cybersystems more secure. This paper also proposes a multilayer cyber-security framework based on IDS for protecting SCADA cybersecurity in smart grids without compromising the availability of normal data. In addition, this paper presents a SCADA-specific cybersecurity testbed to investigate simulated attacks, which has been used in this paper to validate the proposed approach.
Resumo:
Freshwater and brackish microalgal toxins, such as microcystins, cylindrospermopsins, paralytic toxins, anatoxins or other neurotoxins are produced during the overgrowth of certain phytoplankton and benthic cyanobacteria, which includes either prokaryotic or eukaryotic microalgae. Although, further studies are necessary to define the biological role of these toxins, at least some of them are known to be poisonous to humans and wildlife due to their occurrence in these aquatic systems. The World Health Organization (WHO) has established as provisional recommended limit 1 μg of microcystin-LR per liter of drinking water. In this work we present a microsphere-based multi-detection method for five classes of freshwater and brackish toxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), anatoxin-a (ANA-a), saxitoxin (STX) and domoic acid (DA). Five inhibition assays were developed using different binding proteins and microsphere classes coupled to a flow-cytometry Luminex system. Then, assays were combined in one method for the simultaneous detection of the toxins. The IC50's using this method were 1.9 ± 0.1 μg L−1 MC-LR, 1.3 ± 0.1 μg L−1 CYN, 61 ± 4 μg L−1 ANA-a, 5.4 ± 0.4 μg L−1 STX and 4.9 ± 0.9 μg L−1 DA. Lyophilized cyanobacterial culture samples were extracted using a simple procedure and analyzed by the Luminex method and by UPLC–IT-TOF-MS. Similar quantification was obtained by both methods for all toxins except for ANA-a, whereby the estimated content was lower when using UPLC–IT-TOF-MS. Therefore, this newly developed multiplexed detection method provides a rapid, simple, semi-quantitative screening tool for the simultaneous detection of five environmentally important freshwater and brackish toxins, in buffer and cyanobacterial extracts.
Resumo:
DRAM technology faces density and power challenges to increase capacity because of limitations of physical cell design. To overcome these limitations, system designers are exploring alternative solutions that combine DRAM and emerging NVRAM technologies. Previous work on heterogeneous memories focuses, mainly, on two system designs: PCache, a hierarchical, inclusive memory system, and HRank, a flat, non-inclusive memory system. We demonstrate that neither of these designs can universally achieve high performance and energy efficiency across a suite of HPC workloads. In this work, we investigate the impact of a number of multilevel memory designs on the performance, power, and energy consumption of applications. To achieve this goal and overcome the limited number of available tools to study heterogeneous memories, we created HMsim, an infrastructure that enables n-level, heterogeneous memory studies by leveraging existing memory simulators. We, then, propose HpMC, a new memory controller design that combines the best aspects of existing management policies to improve performance and energy. Our energy-aware memory management system dynamically switches between PCache and HRank based on the temporal locality of applications. Our results show that HpMC reduces energy consumption from 13% to 45% compared to PCache and HRank, while providing the same bandwidth and higher capacity than a conventional DRAM system.