986 resultados para Mu Us sandy land


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The controversial love affair of CS Lewis, Oxford scholar and writer of the Narnia Chronicles, is set in a constellation of music, sculpture and mime. CS Lewis’s intriguing relationship with poet Joy Davidman moves, inspires and confronts us with the big questions. Beauty contrasts with the ephemeral land of the shadows. Crossbow’s adaption of William Nicholson’s soulful and witty play explores the joy and the grief of “experience: that most brutal of teachers.” Showcasing the abilities of Brisbane and Sydney actors, the company that brought you The Miracle Worker and Anne of the Thousand Days, will quicken your senses and stir your heart with Shadowlands. All performances have a tactile tour of the stage 20 minutes before the start time of the show. Special signed performance for hearing impaired patrons Thur 5 Aug 2pm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrous oxide (N2O) is a major greenhouse gas (GHG) product of intensive agriculture. Fertilizer nitrogen (N) rate is the best single predictor of N2O emissions in row-crop agriculture in the US Midwest. We use this relationship to propose a transparent, scientifically robust protocol that can be utilized by developers of agricultural offset projects for generating fungible GHG emission reduction credits for the emerging US carbon cap and trade market. By coupling predicted N2O flux with the recently developed maximum return to N (MRTN) approach for determining economically profitable N input rates for optimized crop yield, we provide the basis for incentivizing N2O reductions without affecting yields. The protocol, if widely adopted, could reduce N2O from fertilized row-crop agriculture by more than 50%. Although other management and environmental factors can influence N2O emissions, fertilizer N rate can be viewed as a single unambiguous proxy—a transparent, tangible, and readily manageable commodity. Our protocol addresses baseline establishment, additionality, permanence, variability, and leakage, and provides for producers and other stakeholders the economic and environmental incentives necessary for adoption of agricultural N2O reduction offset projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (> 250 mu m), microaggregate (53-250 mu m), and d-clay (< 2 mu m) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When asking the question, ``How can institutions design science policies for the benefit of decision makers?'' Sarewitz and Pielke Sarewitz, D., Pielke Jr., R.A., this issue. The neglected heart of science policy: reconciling supply of and demand for science. Environ. Sci. Policy 10] posit the idea of ``reconciling supply and demand of science'' as a conceptual tool for assessment of science programs. We apply the concept to the U.S. Department of Agriculture's (USDA) carbon cycle science program. By evaluating the information needs of decision makers, or the ``demand'', along with the supply of information by the USDA, we can ascertain where matches between supply and demand exist, and where science policies might miss opportunities. We report the results of contextual mapping and of interviews with scientists at the USDA to evaluate the production and use of current agricultural global change research, which has the stated goal of providing ``optimal benefit'' to decision makers on all levels. We conclude that the USDA possesses formal and informal mechanisms by which scientists evaluate the needs of users, ranging from individual producers to Congress and the President. National-level demands for carbon cycle science evolve as national and international policies are explored. Current carbon cycle science is largely derived from those discussions and thus anticipates the information needs of producers. However, without firm agricultural carbon policies, such information is currently unimportant to producers. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since land use change can have significant impacts on regional biogeochemistry, we investigated how conversion of forest and cultivation to pasture impact soil C and N cycling. In addition to examining total soil C, we isolated soil physiochemical C fractions in order to understand the mechanisms by which soil C is sequestered or lost. Total soil C did not change significantly over time following conversion from forest, though coarse (250-2,000 mum) particulate organic matter C increased by a factor of 6 immediately after conversion. Aggregate mean weight diameter was reduced by about 50% after conversion, but values were like those under forest after 8 years under pasture. Samples collected from a long-term pasture that was converted from annual cultivation more than 50 years ago revealed that some soil physical properties negatively impacted by cultivation were very slow to recover. Finally, our results indicate that soil macroaggregates turn over more rapidly under pasture than under forest and are less efficient at stabilizing soil C, whereas microaggregates from pasture soils stabilize a larger concentration of C than forest microaggregates. Since conversion from forest to pasture has a minimal impact on total soil C content in the Piedmont region of Virginia, United States, a simple C stock accounting system could use the same base soil C stock value for either type of land use. However, since the effects of forest to pasture conversion are a function of grassland management following conversion, assessments of C sequestration rates require activity data on the extent of various grassland management practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in grassland management intended to increase productivity can lead to sequestration of substantial amounts of atmospheric C in soils. Management-intensive grazing (MiG) can increase forage production in mesic pastures, but potential impacts on soil C have not been evaluated. We sampled four pastures (to 50 cm depth) in Virginia, USA, under MiG and neighboring pastures that were extensively grazed or bayed to evaluate impacts of grazing management on total soil organic C and N pools, and soil C fractions. Total organic soil C averaged 8.4 Mg C ha(-1) (22%) greater under MiG; differences were significant at three of the four sites examined while total soil N was greater for two sites. Surface (0-10 cm) particulate organic matter (POM) C increased at two sites; POM C for the entire depth increment (0-50 cm) did not differ significantly between grazing treatments at any of the sites. Mineral-associated C was related to silt plus clay content and tended to be greater under MiG. Neither soil C:N ratios, POM C, or POM C:total C ratios were accurate indicators of differences in total soil C between grazing treatments, though differences in total soil C between treatments attributable to changes in POM C (43%) were larger than expected based on POM C as a percentage of total C (24.5%). Soil C sequestration rates, estimated by calculating total organic soil C differences between treatments (assuming they arose from changing grazing management and can be achieved elsewhere) and dividing by duration of treatment, averaged 0.41 Mg C ha(-1) year(-1) across the four sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential to sequester atmospheric carbon in agricultural and forest soils to offset greenhouse gas emissions has generated interest in measuring changes in soil carbon resulting from changes in land management. However, inherent spatial variability of soil carbon limits the precision of measurement of changes in soil carbon and hence, the ability to detect changes. We analyzed variability of soil carbon by intensively sampling sites under different land management as a step toward developing efficient soil sampling designs. Sites were tilled crop-land and a mixed deciduous forest in Tennessee, and old-growth and second-growth coniferous forest in western Washington, USA. Six soil cores within each of three microplots were taken as an initial sample and an additional six cores were taken to simulate resampling. Soil C variability was greater in Washington than in Tennessee, and greater in less disturbed than in more disturbed sites. Using this protocol, our data suggest that differences on the order of 2.0 Mg C ha(-1) could be detected by collection and analysis of cores from at least five (tilled) or two (forest) microplots in Tennessee. More spatial variability in the forested sites in Washington increased the minimum detectable difference, but these systems, consisting of low C content sandy soil with irregularly distributed pockets of organic C in buried logs, are likely to rank among the most spatially heterogeneous of systems. Our results clearly indicate that consistent intramicroplot differences at all sites will enable detection of much more modest changes if the same microplots are resampled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epilogue for the edited book "Nexus: New Intersections in Internet Research"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measuring the comparative sustainability levels of cities, regions, institutions and projects is an essential procedure in creating sustainable urban futures. This paper introduces a new urban sustainability assessment model: “The Sustainable Infrastructure, Land-use, Environment and Transport Model (SILENT)”. The SILENT Model is an advanced geographic information system and indicator-based comparative urban sustainability indexing model. The model aims to assist planners and policy makers in their daily tasks in sustainable urban planning and development by providing an integrated sustainability assessment framework. The paper gives an overview of the conceptual framework and components of the model and discusses the theoretical constructs, methodological procedures, and future development of this promising urban sustainability assessment model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The urban waterfront may be regarded as the littoral frontier of human settlement. Typically, over the years, it advances, sometimes retreats, where terrestrial and aquatic processes interact and frequently contest this margin of occupation. Because most towns and cities are sited beside water bodies, many of these urban centers on or close to the sea, their physical expansion is constrained by the existence of aquatic areas in one or more directions from the core. It is usually much easier for new urban development to occur along or inland from the waterfront. Where other physical constraints, such as rugged hills or mountains, make expansion difficult or expensive, building at greater densities or construction on steep slopes is a common response. This kind of development, though technically feasible, is usually more expensive than construction on level or gently sloping land, however. Moreover, there are many reasons for developing along the shore or riverfront in preference to using sites further inland. The high cost of developing existing dry land that presents serious construction difficulties is one reason for creating new land from adjacent areas that are permanently or periodically under water. Another reason is the relatively high value of artificially created land close to the urban centre when compared with the value of existing developable space at a greater distance inland. The creation of space for development is not the only motivation for urban expansion into aquatic areas. Commonly, urban places on the margins of the sea, estuaries, rivers or great lakes are, or were once, ports where shipping played an important role in the economy. The demand for deep waterfronts to allow ships to berth and for adjacent space to accommodate various port facilities has encouraged the advance of the urban land area across marginal shallows in ports around the world. The space and locational demands of port related industry and commerce, too, have contributed to this process. Often closely related to these developments is the generation of waste, including domestic refuse, unwanted industrial by-products, site formation and demolition debris and harbor dredgings. From ancient times, the foreshore has been used as a disposal area for waste from nearby settlements, a practice that continues on a huge scale today. Land formed in this way has long been used for urban development, despite problems that can arise from the nature of the dumped material and the way in which it is deposited. Disposal of waste material is a major factor in the creation of new urban land. Pollution of the foreshore and other water margin wetlands in this way encouraged the idea that the reclamation of these areas may be desirable on public health grounds. With reference to examples from various parts of the world, the historical development of the urban littoral frontier and its effects on the morphology and character of towns and cities are illustrated and discussed. The threat of rising sea levels and the heritage value of many waterfront areas are other considerations that are addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsaturated soil mechanics is receiving increasing attention from researchers and as well as from practicing engineers. However, the requirement of sophisticated devices to measure unsaturated soil properties and time consumption have made the geotechnical engineers keep away from implication of the unsaturated soil mechanics for solving practical geotechnical problems. The application of the conventional laboratory devices with some modifications to measure unsaturated soil properties can promote the application of unsaturated soil mechanics into engineering practice. Therefore, in the present study, a conventional direct shear device was modified to measure unsaturated shear strength parameters at low suction. Specially, for the analysis of rain-induced slope failures, it is important to measure unsaturated shear strength parameters at low suction where slopes become unstable. The modified device was used to measure unsaturated shear strength of two silty soils at low suction values (0 ~ 50 kPa) that were achieved by following drying path and wetting path of soil-water characteristic curves (SWCCs) of soils. The results revealed that the internal friction angle of soil was not significantly affected by the suction and as well as the drying-wetting SWCCs of soils. The apparent cohesion of soil increased with a decreasing rate as the suction increased. Further, the apparent cohesion obtained from soil in wetting was greater than that obtained from soil in drying. Shear stress-shear displacement curves obtained from soil specimens subjected to the same net normal stress and different suction values showed a higher initial stiffness and a greater peak stress as the suction increased. In addition, it was observed that soil became more dilative with the increase of suction. A soil in wetting exhibited slightly higher peak shear stress and more contractive volume change behaviour than that of in drying at the same net normal stress and the suction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increases in atmospheric concentrations of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) due to human activities have been linked to climate change. GHG emissions from land use change and agriculture have been identified as significant contributors to both Australia’s and the global GHG budget. This is expected to increase over the coming decades as rates of agriculture intensification and land use change accelerate to support population growth and food production. Limited data exists on CO2, CH4 and N2O trace gas fluxes from subtropical or tropical soils and land uses. To develop effective mitigation strategies a full global warming potential (GWP) accounting methodology is required that includes emissions of the three primary greenhouse gases. Mitigation strategies that focus on one gas only can inadvertently increase emissions of another. For this reason, detailed inventories of GHGs from soils and vegetation under individual land uses are urgently required for subtropical Australia. This study aimed to quantify GHG emissions over two consecutive years from three major land uses; a well-established, unfertilized subtropical grass-legume pasture, a 30 year (lychee) orchard and a remnant subtropical Gallery rainforest, all located near Mooloolah, Queensland. GHG fluxes were measured using a combination of high resolution automated sampling, coarser spatial manual sampling and laboratory incubations. Comparison between the land uses revealed that land use change can have a substantial impact on the GWP on a landscape long after the deforestation event. The conversion of rainforest to agricultural land resulted in as much as a 17 fold increase in GWP, from 251 kg CO2 eq. ha-1 yr-1 in the rainforest to 889 kg CO2 eq. ha-1 yr-1 in the pasture to 2538 kg CO2 eq. ha-1 yr-1 in the lychee plantation. This increase resulted from altered N cycling and a reduction in the aerobic capacity of the soil in the pasture and lychee systems, enhancing denitrification and nitrification events, and reducing atmospheric CH4 uptake in the soil. High infiltration, drainage and subsequent soil aeration under the rainforest limited N2O loss, as well as promoting CH4 uptake of 11.2 g CH4-C ha-1 day-1. This was among the highest reported for rainforest systems, indicating that aerated subtropical rainforests can act as substantial sink of CH4. Interannual climatic variation resulted in significantly higher N2O emission from the pasture during 2008 (5.7 g N2O-N ha day) compared to 2007 (3.9 g N2O-N ha day), despite receiving nearly 500 mm less rainfall. Nitrous oxide emissions from the pasture were highest during the summer months and were highly episodic, related more to the magnitude and distribution of rain events rather than soil moisture alone. Mean N2O emissions from the lychee plantation increased from an average of 4.0 g N2O-N ha-1 day-1, to 19.8 g N2O-N ha-1 day-1 following a split application of N fertilizer (560 kg N ha-1, equivalent to 1 kg N tree-1). The timing of the split application was found to be critical to N2O emissions, with over twice as much lost following an application in spring (emission factor (EF): 1.79%) compared to autumn (EF: 0.91%). This was attributed to the hot and moist climatic conditions and a reduction in plant N uptake during the spring creating conditions conducive to N2O loss. These findings demonstrate that land use change in subtropical Australia can be a significant source of GHGs. Moreover, the study shows that modifying the timing of fertilizer application can be an efficient way of reducing GHG emissions from subtropical horticulture.