896 resultados para Moving Pole-to-Vehicle Impact Tests.
Resumo:
This paper reports the results of a mixed method approach to answer: To what extent do cultural values impact on e-service use in Saudi Arabia, and if so how? This paper will firstly, introduce the importance of culture and define the aspects of Saudi culture. It will then describe the method used and present the questionnaire findings related to the role of nepotism. The review of the literature on nepotism indicates there is still much to be studied and learned. The legal aspects of nepotism, in addition to its impact on human resource management appear to be the more reported issues. However, nepotism’s impact on Information and Communication Technologies (ICT) has not been studied. This research aims to cover this gap by investigating to what extent nepotism, as one of Saudi Arabia’s cultural values, impacts on e-service use in Saudi Arabia. The tested hypothesis was found consistent with its predicted outcome: nepotism is a negative predictor of intention to use e- services in Saudi Arabia. It is evidenced that consideration of the impact of the cultural values will mainly contribute to the enhancement of social and organisational aspects of e-society research and practices, by deeply understanding them as of the influntials to e-service implementation.
Resumo:
In this article, I argue for an acknowledgement of the significance of the dancer’s role in the creation of independent contemporary dance. I propose the term ‘moving identity’ to outline the independent contemporary dancer’s ‘way of moving’ which could be perceived as the accumulation of various factors including training approaches, choreographic movement traces and anatomical structures. The concept of the moving identity allows us to appreciate the dancer’s unique signature movement style as the collation of embodied experiences into a unique way of moving. However, the moving identity is also open to change when the dancer encounters new choreography and the choreographer. Professional dance training produces particular types of dancers, depending on the techniques with which they engage. I demonstrate how the independent contemporary dancer troubles this distinctiveness by engaging with a multitude of movement styles and approaches throughout a career. This leads me to a fresh description of the dancer’s activity through the lens of Deleuzean concepts of multiplicity and de-stratification. Finally, I propose a definition of the dancer as a fluid and mutable body-in-flux with the creative potential to significantly influence the outcome of the choreographic process.
Resumo:
Climate change is leading to an increased frequency and severity of heat waves. Spells of several consecutive days of unusually high temperatures have led to increased mortality rates for the more vulnerable in the community. The problem is compounded by the escalating energy costs and increasing peak electrical demand as people become more reliant on air conditioning. Domestic air conditioning is the primary determinant of peak power demand which has been a major driver of higher electricity costs. This report presents the findings of multidisciplinary research which develops a national framework to evaluate the potential impacts of heat waves. It presents a technical, social and economic approach to adapt Australian residential buildings to ameliorate the impact of heat waves in the community and reduce the risk of its adverse outcomes. Through the development of a methodology for estimating the impact of global warming on key weather parameters in 2030 and 2050, it is possible to re-evaluate the size and anticipated energy consumption of air conditioners in future years for various climate zones in Australia. Over the coming decades it is likely that mainland Australia will require more cooling than heating. While in some parts the total electricity usage for heating and cooling may remain unchanged, there is an overall significant increase in peak electricity demand, likely to further drive electricity prices. Through monitoring groups of households in South Australia, New South Wales and Queensland, the impact of heat waves on both thermal comfort sensation and energy consumption for air conditioning has been evaluated. The results show that households are likely to be able to tolerate slightly increased temperature levels indoors during periods of high outside temperatures. The research identified that household electricity costs are likely to rise above what is currently projected due to the impact of climate change. Through a number of regulatory changes to both household design and air conditioners, this impact can be minimised. A number of proposed retrofit and design measures are provided, which can readily reduce electricity usage for cooling at minimal cost to the household. Using a number of social research instruments, it is evident that households are willing to change behaviour rather than to spend money. Those on lower income and elderly individuals are the least able to afford the use of air conditioning and should be a priority for interventions and assistance. Increasing community awareness of cost effective strategies to manage comfort and health during heat waves is a high priority recommended action. Overall, the research showed that a combined approach including behaviour change, dwelling modification and improved air conditioner selection can readily adapt Australian households to the impact of heat waves, reducing the risk of heat related deaths and household energy costs.
Resumo:
Recent road safety statistics show that the decades-long fatalities decreasing trend is stopping and stagnating. Statistics further show that crashes are mostly driven by human error, compared to other factors such as environmental conditions and mechanical defects. Within human error, the dominant error source is perceptive errors, which represent about 50% of the total. The next two sources are interpretation and evaluation, which accounts together with perception for more than 75% of human error related crashes. Those statistics show that allowing drivers to perceive and understand their environment better, or supplement them when they are clearly at fault, is a solution to a good assessment of road risk, and, as a consequence, further decreasing fatalities. To answer this problem, currently deployed driving assistance systems combine more and more information from diverse sources (sensors) to enhance the driver's perception of their environment. However, because of inherent limitations in range and field of view, these systems' perception of their environment remains largely limited to a small interest zone around a single vehicle. Such limitations can be overcomed by increasing the interest zone through a cooperative process. Cooperative Systems (CS), a specific subset of Intelligent Transportation Systems (ITS), aim at compensating for local systems' limitations by associating embedded information technology and intervehicular communication technology (IVC). With CS, information sources are not limited to a single vehicle anymore. From this distribution arises the concept of extended or augmented perception. Augmented perception allows extending an actor's perceptive horizon beyond its "natural" limits not only by fusing information from multiple in-vehicle sensors but also information obtained from remote sensors. The end result of an augmented perception and data fusion chain is known as an augmented map. It is a repository where any relevant information about objects in the environment, and the environment itself, can be stored in a layered architecture. This thesis aims at demonstrating that augmented perception has better performance than noncooperative approaches, and that it can be used to successfully identify road risk. We found it was necessary to evaluate the performance of augmented perception, in order to obtain a better knowledge on their limitations. Indeed, while many promising results have already been obtained, the feasibility of building an augmented map from exchanged local perception information and, then, using this information beneficially for road users, has not been thoroughly assessed yet. The limitations of augmented perception, and underlying technologies, have not be thoroughly assessed yet. Most notably, many questions remain unanswered as to the IVC performance and their ability to deliver appropriate quality of service to support life-saving critical systems. This is especially true as the road environment is a complex, highly variable setting where many sources of imperfections and errors exist, not only limited to IVC. We provide at first a discussion on these limitations and a performance model built to incorporate them, created from empirical data collected on test tracks. Our results are more pessimistic than existing literature, suggesting IVC limitations have been underestimated. Then, we develop a new CS-applications simulation architecture. This architecture is used to obtain new results on the safety benefits of a cooperative safety application (EEBL), and then to support further study on augmented perception. At first, we confirm earlier results in terms of crashes numbers decrease, but raise doubts on benefits in terms of crashes' severity. In the next step, we implement an augmented perception architecture tasked with creating an augmented map. Our approach is aimed at providing a generalist architecture that can use many different types of sensors to create the map, and which is not limited to any specific application. The data association problem is tackled with an MHT approach based on the Belief Theory. Then, augmented and single-vehicle perceptions are compared in a reference driving scenario for risk assessment,taking into account the IVC limitations obtained earlier; we show their impact on the augmented map's performance. Our results show that augmented perception performs better than non-cooperative approaches, allowing to almost tripling the advance warning time before a crash. IVC limitations appear to have no significant effect on the previous performance, although this might be valid only for our specific scenario. Eventually, we propose a new approach using augmented perception to identify road risk through a surrogate: near-miss events. A CS-based approach is designed and validated to detect near-miss events, and then compared to a non-cooperative approach based on vehicles equiped with local sensors only. The cooperative approach shows a significant improvement in the number of events that can be detected, especially at the higher rates of system's deployment.
Resumo:
Background and aims The Australasian Nutrition Care Day Survey (ANCDS) reported two-in-five patients consume ≤50% of the offered food in Australian and New Zealand hospitals. After controlling for confounders (nutritional status, age, disease type and severity), the ANCDS also established an independent association between poor food intake and increased in-hospital mortality. This study aimed to evaluate if medical nutrition therapy (MNT) could improve dietary intake in hospital patients eating poorly. Methods An exploratory pilot study was conducted in the respiratory, neurology and orthopaedic wards of an Australian hospital. At baseline, percentage food intake (0%, 25%, 50%, 75%, and 100%) was evaluated for each main meal and snack for a 24-hour period in patients hospitalised for ≥2 days and not under dietetic review. Patients consuming ≤50% of offered meals due to nutrition-impact symptoms were referred to ward dietitians for MNT. Food intake was re-evaluated on the seventh day following recruitment (post-MNT). Results 184 patients were observed over four weeks; 32 patients were referred for MNT. Although baseline and post-MNT data for 20 participants (68±17years, 65% females) indicated a significant increase in median energy and protein intake post-MNT (3600kJ/day, 40g/day) versus baseline (2250kJ/day, 25g/day) (p<0.05), the increased intake met only 50% of dietary requirements. Persistent nutrition impact symptoms affected intake. Conclusion In this pilot study whilst dietary intake improved, it remained inadequate to meet participants’ estimated requirements due to ongoing nutrition-impact symptoms. Appropriate medical management and early enteral feeding could be a possible solution for such patients.
Resumo:
Benzodiazepines are widely prescribed to manage sleep disorders, anxiety and muscular tension. While providing short-term relief, continued use induces tolerance and withdrawal, and in older users, increases the risk of falls. However, long-term prescription remains common, and effective interventions are not widely available. This study developed a self-managed cognitive behaviour therapy package for cessation of benzodiazepine use delivered to participants via mail (M-CBT) and trialled its effectiveness as an adjunct to a general practitioner (GP)-managed dose reduction schedule. In the pilot trial, participants were randomly assigned to GP management with immediate or delayed M-CBT. Significant recruitment and engagement problems were experienced, and only three participants were allocated to each condition. After immediate M-CBT, two participants ceased use, while none receiving delayed treatment reduced daily intake by more than 50%. Across the sample, doses at 12 months remained significantly lower than baseline, and qualitative feedback from participants was positive. While M-CBT may have promise, improved engagement of GPs and participants is needed for this approach to substantially impact on community-wide benzodiazepine use.
Resumo:
Objective To evaluate the effects of Optical Character Recognition (OCR) on the automatic cancer classification of pathology reports. Method Scanned images of pathology reports were converted to electronic free-text using a commercial OCR system. A state-of-the-art cancer classification system, the Medical Text Extraction (MEDTEX) system, was used to automatically classify the OCR reports. Classifications produced by MEDTEX on the OCR versions of the reports were compared with the classification from a human amended version of the OCR reports. Results The employed OCR system was found to recognise scanned pathology reports with up to 99.12% character accuracy and up to 98.95% word accuracy. Errors in the OCR processing were found to minimally impact on the automatic classification of scanned pathology reports into notifiable groups. However, the impact of OCR errors is not negligible when considering the extraction of cancer notification items, such as primary site, histological type, etc. Conclusions The automatic cancer classification system used in this work, MEDTEX, has proven to be robust to errors produced by the acquisition of freetext pathology reports from scanned images through OCR software. However, issues emerge when considering the extraction of cancer notification items.
Resumo:
Climate change is affecting and will increasingly influence human health and wellbeing. Children are particularly vulnerable to the impact of climate change. An extensive literature review regarding the impact of climate change on children’s health was conducted in April 2012 by searching electronic databases PubMed, Scopus, ProQuest, ScienceDirect, and Web of Science, as well as relevant websites, such as IPCC and WHO. Climate change affects children’s health through increased air pollution, more weather-related disasters, more frequent and intense heat waves, decreased water quality and quantity, food shortage and greater exposure to toxicants. As a result, children experience greater risk of mental disorders, malnutrition, infectious diseases, allergic diseases and respiratory diseases. Mitigation measures like reducing carbon pollution emissions, and adaptation measures such as early warning systems and post-disaster counseling are strongly needed. Future health research directions should focus on: (1) identifying whether climate change impacts on children will be modified by gender, age and socioeconomic status; (2) refining outcome measures of children’s vulnerability to climate change; (3) projecting children’s disease burden under climate change scenarios; (4) exploring children’s disease burden related to climate change in low-income countries, and ; (5) identifying the most cost-effective mitigation and adaptation actions from a children’s health perspective.
Resumo:
This paper treats the design and analysis of an energy absorbing system. Experimental tests were conducted on a prototype, and these tests were used to validate a finite element model of the system. The model was then used to analyze the response of the system under dynamic impact loading. The response was compared with that of a similar system consisting of straight circular tubes, empty and foam-filled conical tubes. Three types of such supplementary devices were included in the energy absorbing system to examine the crush behavior and energy absorption capacity when subjected to axial and oblique impact loadings. The findings were used to develop design guidelines and recommendations for the implementation of tapered tubes in energy absorbing systems. To this end, the system was conceptual in form such that it could be adopted for a variety of applications. Nevertheless, for convenience, the approach in this study is to treat the system as a demonstrator car bumper system used to absorb impact energy during minor frontal collisions.
Resumo:
This paper elaborates on the Cybercars-2 Wireless Communication Framework for driverless city vehicles, which is used for Vehicle-to-Vehicle and Vehicle-to-Infrastructure communication. The developed framework improves the safety and efficiency of driverless city vehicles. Furthermore, this paper also elaborates on the vehicle control software architecture. On-road tests of both the communication framework and its application for real-time decision making show that the communication framework is reliable and useful for improving the safe operation of driverless city vehicles.
Resumo:
This project is a breakthrough in developing new scientific approaches for the design, development and evaluation of inter-vehicle communications, networking and positioning systems as part of Cooperative Intelligent Transportation Systems ensuring the safety of both roads and rail networks. This research focused on the elicitation, specification, analysis and validation of requirements for Vehicle-to-Vehicle communications and networking, and Vehicle-to-Vehicle positioning, which are accomplished with the research platform developed for this study. A number of mathematical models for communications, networking and positioning were developed from which simulations and field experiments were conducted to evaluate the overall performance of the platform. The outcomes of this research significantly contribute to improving the performance of the communications and positioning components of Cooperative Intelligent Transportation Systems.
Resumo:
The social cost of road injury and fatalities is still unacceptable. The driver is often mainly responsible for road crashes, therefore changing the driver behaviour is one of the most important and most challenging priority in road transport. This paper presents three innovative visions that articulate the potential of using Vehicle to Vehicle (V2V) communication for supporting the exchange of social information amongst drivers. We argue that there could be tremendous benefits in socialising cars to influence human driving behaviours for the better and that this aspect is still relevant in the age of looming autonomous cars. Our visions provide theoretical grounding how V2V infrastructure and emerging human–machine interfaces (HMI) could persuade drivers to: (i) adopt better (e.g. greener) driving practices, (ii) reduce drivers aggressiveness towards pro-social driving behaviours, and (iii) reduce risk-taking behaviour in young, particularly male, adults. The visions present simple but powerful concepts that reveal ‘good’ aspects of the driver behaviour to other drivers and make them contagious. The use of self-efficacy, social norms, gamification theories and social cues could then increase the likelihood of a widespread adoption of such ‘good’ driving behaviours.
Resumo:
Like the UK, Australia has a number of school nursing models and programmes. The School Based Youth Health Nurse Program (SBYHNP) is a new and unique model of school nursing in Queensland, Australia. The SBYHNP represents a philosophical and structural shift from traditional school nursing programmes. The purpose of this qualitative case study is to explore the reasons School Based Youth Health Nurses (SBYHN) leave school nursing. Sixteen in-depth interviews were conducted with participants who practiced as SBYHN and left the SBYHNP. This case study reveals six themes: The politics’: Navigating the organisational divide, 'Unconditional positive regard’: Surviving without team cohesion, 'Absolutely exhausted’: Maintaining physical and emotional strength, ‘Definitely geographical’: Managing the tyranny of time and distance, ‘If things fell into place’: Thinking about what could have been, and ‘A stepping stone’: Moving on to the next nursing position. This case study suggests nurses considering school nursing as a specialty should seek opportunity to understand this complex role, ensure realistic expectations and ndertake relevant qualifications. This approach may secure the investment made by nurses and schools and create demand for a highly sort after position.
Resumo:
Portable, water filled road safety barriers are used to provide protection and reduce the potential hazard due to errant vehicles in areas where the road conditions change frequently (e.g. near road work sites). As part of an effort to reduce excessive working widths typical of these systems, a study was conducted to assess the effectiveness of introducing polymeric foam filled panels into the design. Surrogate impact tests of a design typical of such as barrier system were conducted utilising a pneumatically powered horizontal impact testing machine up to impact energies of 7.40 kJ. Results of these tests are utilised to examine the barrier behaviour, in addition to being used to validate a couple FE/SPH model of the barrier system. Once validated, the FE/SPH model it utilised as the basis for a parametric study into the efficacy and effects of the inclusion of polymeric foam filled panels on the performance of portable water filled road safety barriers. It was found that extruded polystyrene foam functioned well, with a greater thickness of the foam panel significantly reducing the impacting body velocity as the barrier began to translate.
Resumo:
This thesis presents an approach for a vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structure such as light and power distribution poles is a difficult task. There are challenges involved with developing such an inspection system, such as flying in close proximity to a target while maintaining a fixed stand-off distance from it. The contributions of this thesis fall into three main areas. Firstly, an approach to vehicle dynamic modeling is evaluated in simulation and experiments. Secondly, EKF-based state estimators are demonstrated, as well as estimator-free approaches such as image based visual servoing (IBVS) validated with motion capture ground truth data. Thirdly, an integrated pole inspection system comprising a VTOL platform with human-in-the-loop control, (shared autonomy) is demonstrated. These contributions are comprehensively explained through a series of published papers.