991 resultados para Mort Creek Site Complex
Resumo:
Albicidins are a family of phytotoxins and antibiotics which play an important role in the pathogenesis of sugarcane leaf scald disease. The albA gene from Klebsiella oxytoca encodes a protein which inactivates albicidin by heat-reversible binding. Albicidin ligand binding to a recombinant AlbA protein, purified by means of a glutathione S-transferase gene fusion system, is an almost instant and saturable reaction. Kinetic and stoichiometric analysis of the binding reaction indicated the presence of a single high affinity binding site with a dissociation constant of 6.4 x 10(-8) M. The AlbA-albicidin complex is stable from 4 to 40 degrees C, from ph 5 to 9 and in high salt solutions. Treatment with protein denaturants released all bound albicidin. These properties indicate that AlbA may be a useful affinity matrix for selective purification of albicidin antibiotics. AlbA does not bind to p-nitrophenyl butyrate or alpha-naphthyl butyrate, the substrates of the albicidin detoxification enzyme AlbD from Pantoea dispersa. The potential exists to pyramid genes for different mechanisms in transgenic plants to protect plastid DNA replication from inhibition by albicidins.
Resumo:
The binuclear complex [NBu4n](4)[Cr-2(ox)(5)]. 2CHCl(3) has been prepared by an ion-exchange procedure employing Dowex 50WX2 cation-exchange resin in the n-butylammonium form and potassium tris(oxalato)chromate(III). The dimeric complex was characterised by a crystal structure determination: monoclinic, space group C2/c, a = 29.241(7), b = 15.192(2), c = 22.026(5) Angstrom, beta = 94.07(1)degrees, Z = 4. The magnetic susceptibility (300-4.2 K) indicated that the chromium(III) sites were antiferromagnetically coupled (J = -3.1 cm(-1)).
Resumo:
Extracellular polysaccharides from three Erythroclonium spp. were shown, by a combination of compositional, linkage analyses, and Fourier transform infrared and C-13-nuclear magnetic resonance spectroscopy, to be highly substituted carrageenans with at least five types of repeating disaccharide units. These are the carrabiose 2,4'-disulfate of iota-carrageenan, carrabiose 2-sulfate of alpha-carrageenan, the 6'-O-methylated counterparts of each of these repeating units, and 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate. The polysaccharides also contain significant amounts of unsubstituted, 4-linked galactopyranose and small amounts of 4-linked 3-O-methylgalactopyranose and terminal glycosyl residues. The carrageenan preparations of the three species are similar, differing only in the proportions of some components. (C) 1998 Elsevier Science Ltd.
Resumo:
Microencapsulation of lemon oil was undertaken with beta-cyclodextrin using a precipitation method at the five lemon oil to beta-cyclodextrin ratios of 3:97, 6:94, 9:91, 12:88, and 15:85 (w/w) in order to determine the effect of the ratio of lemon oil to beta-cyclodextrin on the inclusion efficiency of beta-cyclodextrin for encapsulating oil volatiles. The retention of lemon oil volatiles reached a maximum at the lemon oil to beta-cyclodextrin ratio of 6:94; however, the maximum inclusion capacity of beta-cyclodextrin and a maximum powder recovery were achieved at the ratio of 12:88, in which the beta-cyclodextrin complex contained 9.68% (w/w) lemon oil. The profile and proportion of selected flavor compounds in the beta-cyclodextrin complex and the starting lemon oil were not significantly different.
Resumo:
Kidney function and the role of the cloacal complex in osmoregulation was investigated in estuarine crocodile (Crocodylus porosus) exposed to three environmental salinities: hypo-, iso- and hyperosmotic to the plasma. Plasma homeostasis was maintained over the range of salinities. Antidiuresis occurred with increased salinity. Although urine from the kidneys retained an osmotic pressure between 77% and 82% of the plasma, over 93% and 98% of plasma chloride filtered at the glomeruli was reabsorbed during passage through the kidneys under hypo and hyperosmotic conditions, respectively, and only 64% in iso-osmotic water. The kidneys were the primary site of sodium reabsorption under hypo-and hyperosmotic conditions. Secondary processing of urine during storage in the cloaca varied with salinity. During post renal storage of urine, the difference in urine osmotic pressure increased from -26.1 +/- 15.5 to 35.66 +/- 9.29 mOsM with increased salinity, and potassium concentration of urine increased over 3-fold in C. porosus from freshwater. The almost complete reabsorption of both sodium and chloride under hyperosmotic conditions indicates the necessity for secretory activity by the lingual salt glands. The osmoregulatory response of the kidneys and cloacal complex to environmental salinity is both plastic and complementary. (C) 1998 Elsevier Science Inc.
Resumo:
A common mechanism for chromosomal fragile site genesis is not yet apparent. Folate-sensitive fragile sites are expanded p(CCG)n repeats that arise from longer normal alleles. Distamycin A or bromodeoxyuridine-inducible fragile site FRA16B is an expanded AT-rich similar to 33 bp repeat; however, the relationship between normal and fragile site alleles is not known. Here, we report that bromodeoxyuridine-inducible, distamycin A-insensitive fragile site FRA10B is composed of expanded similar to 42 bp repeats. Differences in repeat motif length or composition between different FRA10B families indicate multiple independent expansion events. Some FRA10B alleles comprise a mixture of different expanded repeat motifs. FRA10B fragile site and long normal alleles share flanking polymorphisms. Somatic and intergenerational FRA10B repeat instability analogous to that found in expanded trinucleotide repeats supports dynamic mutation as a common mechanism for repeat expansion.
Resumo:
The carboxy terminal octapeptide of cholecystokinin (CCK8) is a hormone that binds high affinity receptors in a number of tissues including pancreas and pancreatic tumours. As part of our studies to develop effective gene therapy for the treatment of pancreatic cancers, we have investigated various gene delivery systems that depend on CCK8 receptor targeting. In this paper,we describe the synthesis of a CCK8-DNA complex designed to deliver foreign DNA to cholecystokinin receptor-positive cells. CCK8 was ligated to avidin and then complexed to linearis biotinylated DNA (pSV-CAT). The uptake of P-32-labelled CCK8-DNA complex by rat pancreatic acini was linear with time over 4 h with 65-70% of uptake inhibited by 100 nM CCK8. The complex appeared to be internalised since it could not be removed by acid wash. When administered intra-arterially, the complex was rapidly removed from the circulation with no evidence of targeted delivery to the pancreas, However, following a single intraperitoneal dose, the pancreas accumulated-5- 8% of the total administered complex by 24 h. These results suggest that peptide-dependent gene delivery to CCK receptor positive cells in vivo is feasible but, when administered directly into the circulation, diffusional barriers across the endothelium may limit distribution to peripheral tissues. Intraperitoneal administration therefore may be a useful alternative for targeting the pancreas.
Resumo:
Recent research has focused on the N-methyl-D-aspartate receptor system as a major site of ethanol action in the brain and specifically on compensatory changes in the expression of the polyamine-sensitive NR2B subunit. Therefore, we examined the effects of chronic ethanol treatment on polyamine homeostasis in the rat brain. Wistar rats were made dependent by ethanol vapor inhalation. This caused a rise in hippocampal ornithine decarboxylase (ODC) activity that was correlated with the appearance of physiological dependence. ODC activity returned to control levels within 3 days of ethanol withdrawal. Enzyme activity also increased in the cerebral cortex, striatum, and cerebellum of the ethanol-dependent rats. The concentration of the polyamines (putrescine, spermidine, and spermine) in the hippocampus was increased in ethanol-dependent rats. Injection of the ODC inhibitor, gamma-difluoromethylornithine (500 mg/kg) at the onset of withdrawal resulted in a significant reduction in the severity of withdrawal behaviors. The level of ODC activity and the severity of withdrawal behaviors were positively correlated. Perturbed polyamine homeostasis may represent an important molecular component in the initiation of ethanol withdrawal behaviors in the ethanol-dependent rat.
Resumo:
Structures of free, substrate-bound and product-bound forms of Escherichia coli xanthine-guanine phosphoribosyltransferase (XGPRT) have been determined by X-ray crystallography. These are compared with the previously determined structure of magnesium and sulphate-bound XPRT. The structure of free XGPRT at 2.25 Angstrom resolution confirms the flexibility of residues in and around a mobile loop identified in other PRTases and shows that the cis-peptide conformation of Arg37 at the active site is maintained in the absence of bound ligands. The structures of XGPRT complexed with the purine base substrates guanine or xanthine in combination with cPRib-PP, an analog of the second substrate PRib-PP, have been solved to 2.0 Angstrom resolution. In these two structures the disordered phosphate-binding loop of uncomplexed XGPRT becomes ordered through interactions with the 5'-phosphate group of cPRib-PP. The cyclopentane ring of cPRib-PP has the C3 exo pucker conformation, stabilised by the cPRib-PP-bound Mg2+. The purine base specificity of XGPRT appears to be due to water-mediated interactions between the 2-exocyclic groups of guanine or xanthine and side-chains of Glu136 and Asp140, as well as the main-chain oxygen atom of Ile135. Asp92, together with Lys115, could help stabilise the N7-protonated tautomer of the incoming base and could act as a general base to remove the proton from N7 .when the nucleotide product is formed. The 2.6 Angstrom resolution structure of XGPRT complexed with product GMP is similar to the substrate-bound complexes. However, the ribose ring of GMP is rotated by similar to 24 degrees compared with the equivalent ring in cPRib-PP. This rotation results in the loss of all interactions between the ribosyl group and the enzyme in the product complex. (C) 1998 Academic Press.
Resumo:
Two geographically distinct silcrete associations are present in southern Australia, inland and eastern; these were sampled in central South Australia and central Victoria, respectively, At each site, both silicified and immediately adjacent unsilicified parent material were collected. Analytical data from these pairs were used to construct isocons, assuming Zr immobility, and to calculate the volume change and amount of silica introduced during silicification, These results, together with whole-rock oxygen isotope compositions, were used to determine the delta(18)O of th, introduced silica, The results show that the eastern silcretes in central Victoria are probably linked genetically to the associated basalts, weathering of which supplied the introduced silica, This conclusion is based on the close spatial connection between the two, as well as the substantial amount of introduced silica in the silcretes (greater than in the inland silcretes), resulting in volume increases in some eastern silcretes, Oxygen isotopic calculations for the silcretes indicate that the silica precipitated from groundwaters at temperatures slightly higher than present conditions. Silcrete formation apparently occurred during the Miocene and Pliocene (basalts in Victoria younger than Pliocene lack associated silcrete) and may reflect the much wetter climate in southeastern Australia at that time. The inland silcretes of central South Australia can be divided into pedogenic (the most common) and groundwater varieties. The pedogenic silcretes, which show typical soil features like columnar and nodular textures, contain moderate amounts of introduced silica that precipitated by evaporation from saline groundwaters, For the groundwater silcretes, which have massive textures and formed at or close to the water table, insufficient data are available to determine the mode of formation. The inland pedogenic silcretes have probably been farming from the Eocene-Miocene to the present, implying that conditions of seasonally high evaporation have occurred in central Australia during this time period. Thus silcrete formation depends on a complex interplay between climate and silica supply, and it is impossible to generalize that the presence of silcrete is indicative of a particular climate. Likewise, the elemental composition of silcretes, particularly Ti content, is not necessarily of climatic significance, Nevertheless, detailed geochemical and oxygen isotopic studies of a silcrete and its parent material can elucidate the mechanisms of silcrete formation, and if evaporation is indicated as a major factor in silcrete formation, then the climate at the time was likely to have been at least seasonally arid.
Resumo:
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease in which unknown arthrogenic autoantigen is presented to CD4+ T cells. The strong association of the disease with an epitope within the HLA-DR chain shared between various alleles of HLA-DR4 and DR1 emphasizes the importance of antigen presentation. This immune response predominantly occurs in the synovial tissue and fluid of the joints and autoreactive T cells are readily demonstrable in both the synovial compartment and blood. Circulating dendritic cells (DC) are phenotypically and functionally identical with normal peripheral blood (PB) DC. In the synovial tissue, fully differentiated perivascular DC are found in close association with T cells and with B cell follicles, sometimes containing follicular DC. These perivascular DC migrate across the activated endothelium from blood and receive differentiative signals within the joint from monocyte-derived cytokines and CD40-ligand+ T cells. In the SF, DC manifest an intermediate phenotype, similar to that of monocyte-derived DC in vitro. Like a delayed-type hypersensitivity response, the rheumatoid synovium represents an effector site. DC at many effector sites have a characteristic pattern of infiltration and differentiation. It is important to note that the effector response is not self-limiting in RA autoimmune inflammation. In this article, we argue that the presentation of self-antigen by DC and by autoantibody-producing B cells is critical for the perpetuation of the autoimmune response. Permanently arresting this ongoing immune response with either pharmaceutical agents or immunotherapy is a major challenge for immunology.
Resumo:
A trinuclear macrocyclic complex is reported from the metal directed condensation between melamine, formaldehyde and the Cu-II complex of a linear tetraamine.
Resumo:
Structurally related tetratricopeptide repeat motifs in steroid receptor-associated immunophilins and the STI1 homolog, Hop, mediate the interaction with a common cellular target, hsp90, We have identified the binding domain in hsp90 for cyclophilin 40 (CyP40) using a two-hybrid system screen of a mouse cDNA library. All isolated clones encoded the intact carboxyl terminus of hsp90 and overlapped with a common region corresponding to amino acids 558-724 of murine hsp84, The interaction was confirmed in vitro with bacterially expressed CyP40 and deletion mutants of hsp90 beta and was delineated further to a 124-residue COOH-terminal segment of hsp90, Deletion of the conserved MEEVD sequence at the extreme carboxyl terminus of hsp90 precludes interaction with CyP40, signifying an important role for this motif in hsp90 function. We show that CyP40 and Hop display similar interaction profiles with hsp90 truncation mutants and present evidence for the direct competition of Hop and FK506-binding protein 52 with CyP40 for binding to the hsp90 COOH-terminal region. Our results are consistent with a common tetratricopeptide repeat interaction site for Hop and steroid receptor associated immunophilins within a discrete COOH-terminal domain of hsp90. This region of hsp90 mediates ATP-independent chaperone activity, overlaps the hsp90 dimerization domain, and includes structural elements important for steroid receptor interaction.
Resumo:
Mixed valence complexes containing ferro- and ferricyanide have been known for almost 300 years, but no dinuclear, non-polymeric examples of these complexes have been structurally characterized. Here we report the first such example, comprising ferrocyanide coordinated to a pentaaminecobalt(III) complex. This Fe-II-Co-III complex may be reversibly oxidized to the Fe-III-Co-III analogue.