914 resultados para Morphological changes
Resumo:
BACKGROUND: Malignant melanoma is a highly metastatic cutaneous cancer and typically refractory to chemotherapy. Deregulated apoptosis has been identified as a major cause of cancer drug resistance, and upregulated expression of the inhibitor of apoptosis protein melanom, an inhibitor of apoptosis (ML-IAP) is frequent in melanoma. METHODS: Based on the conclusion that ML-IAP expression contributes to a malignant phenotype, we down-regulated the ML-IAP mRNA using sequence optimized antisense oligonucleotides. RESULTS: As measured by real-time PCR, oligonucleotides M706 and M711 inhibited ML-IAP mRNA expression by 47% and 52%, respectively in the highly metastatic and drug resistant SK-MEL28 cell line. Oligonucleotide M706, which was previously evaluated in G361 cells as the most efficient inhibitor of ML-IAP expression, was chosen to compare cell viability and drug sensitivity of these two melanoma cell lines with different p53 functionality. Protein expression was reduced by oligonucleotide M706 to 49% of the normal level and resulted in a dose-dependent specific reduction of cell viability with a maximum of 39% at 600 nM. Typical morphological changes showed that loss of viability was mainly due to cell death. In combination experiments, the use of oligonucleotide M706 resulted in a two-fold increase of cisplatin cytotoxicity at different concentrations of oligonucleotide and cisplatin (P<0.05). This is in line with our previous findings in G361 melanoma cell line, in which oligonucleotide M706 caused a 3-fold increase in cisplatin cytotoxicity. CONCLUSION: Our data suggest the use of ML-IAP antisense oligonucleotides to overcome drug resistance in metastatic melanoma, in spite of its p53 status.
Resumo:
AIM: Endometriosis is often associated with lower abdominal pain, dysmenorrhea, dyspareunia, and chronic pelvic pain. There is no correlation between the extent of endometriosis and the intensity of pain. The mechanism of pain in endometriosis is unknown. The aim of our study was to investigate the influence of peritoneal fluid (PF) from endometriosis patients on cultured neural cells that are the morphological basis of nociception, and to determine whether there was a relationship between the rAFS staging and an elevation of TGF-beta1 production by these cells. METHODS: Different human neuroblastoma cell lines were grown to 3/4 confluence and then cultured in presence of PF pooled according to the presence of no, mild, or severe endometriosis. After 6 and 24 h of incubation, the morphological changes were assessed and the metabolic activity was determined. RESULTS: The different cell lines showed strongly varying proliferation and aggregation patterns. The metabolic activity was also varying between cell lines, but no consistently increased cell turnover in the PF when compared with the control medium nor associated to a particular, endometriosis-derived PF pool could be shown. In this experimental setting, we have observed that the cell proliferation in the presence of PF was inhibited, and not enhanced as it might have been expected. Measurement of TGF-beta1 showed higher production rates for this cytokine under exposure to PF than in controls for some but not all tested cell lines, but there was no association with the stage (rAFS) of the disease. CONCLUSION: The neuronal cell culture model may become a useful tool to investigate the endometriosis-derived pain, but different endpoints and cell lines may have to be introduced.
Resumo:
Apoptosis is essential to eliminate secretory epithelial cells during the involution of the mammary gland. The environmental regulation of this process is however, poorly understood. This study tested the effect of HAMLET (human alpha-lactalbumin made lethal to tumor cells) on mammary cells. Plastic pellets containing HAMLET were implanted into the fourth inguinal mammary gland of lactating mice for 3 days. Exposure of mammary tissue to HAMLET resulted in morphological changes typical for apoptosis and in a stimulation of caspase-3 activity in alveolar epithelial cells near the HAMLET pellets but not more distant to the pellet or in contralateral glands. The effect was specific for HAMLET and no effects were observed when mammary glands were exposed to native a-lactalbumin or fatty acid alone. HAMLET also induced cell death in vitro in a mouse mammary epithelial cell line. The results suggest that HAMLET can mediate apoptotic cell death in mammary gland tissue.
Resumo:
Positron emission tomography-computed tomography (PET-CT) has gained widespread acceptance as a staging investigation in the diagnostic workup of malignant tumours and may be used to visualize metabolic changes before the evolution of morphological changes. To make histology of PET findings without distinctive structural changes available for treatment decisions, we developed a protocol for multimodal image-guided interventions using an integrated PET-CT machine. We report our first experience in 12 patients admitted for staging and restaging of breast cancer, non-small cell lung cancer, cervical cancer, soft tissue sarcoma, and osteosarcoma. Patients were repositioned according to the findings in PET-CT and intervention was planned based on a subsequent single-bed PET-CT acquisition of the region concerned. The needle was introduced under CT guidance in a step-by-step technique and correct needle position in the centre of the FDG avid lesion was assured by repetition of a single-bed PET-CT acquisition before sampling. The metabolically active part of lesions was accurately targeted in all patients and representative samples were obtained in 92%. No major adverse effects occurred. We conclude that PET-CT guidance for interventions is feasible and may be promising to optimize the diagnostic yield of CT-guided interventions and to make metabolically active lesions without morphological correlate accessible to percutaneous interventions.
Resumo:
An ADP-ribosylating toxin named Aeromonas salmonicida exoenzyme T (AexT) in A. salmonicida subsp. salmonicida, the etiological agent of furunculosis in fish, was characterized. Gene aexT, encoding toxin AexT, was cloned and characterized by sequence analysis. AexT shows significant sequence similarity to the ExoS and ExoT exotoxins of Pseudomonas aeruginosa and to the YopE cytotoxin of different Yersinia species. The aexT gene was detected in all of the 12 A. salmonicida subsp. salmonicida strains tested but was absent from all other Aeromonas species. Recombinant AexT produced in Escherichia coli possesses enzymatic ADP-ribosyltransferase activity. Monospecific polyclonal antibodies directed against purified recombinant AexT detected the toxin produced by A. salmonicida subsp. salmonicida and cross-reacted with ExoS and ExoT of P. aeruginosa. AexT toxin could be detected in a wild type (wt) strain of A. salmonicida subsp. salmonicida freshly isolated from a fish with furunculosis; however, its expression required contact with RTG-2 rainbow trout gonad cells. Under these conditions, the AexT protein was found to be intracellular or tightly cell associated. No AexT was found when A. salmonicida subsp. salmonicida was incubated in cell culture medium in the absence of RTG-2 cells. Upon infection with wt A. salmonicida subsp. salmonicida, the fish gonad RTG-2 cells rapidly underwent significant morphological changes. These changes were demonstrated to constitute cell rounding, which accompanied induction of production of AexT and which led to cell lysis after extended incubation. An aexT mutant which was constructed from the wt strain with an insertionally inactivated aexT gene by allelic exchange had no toxic effect on RTG-2 cells and was devoid of AexT production. Hence AexT is directly involved in the toxicity of A. salmonicida subsp. salmonicida for RTG-2 fish cells.
Resumo:
Regardless of the mechanisms that initiate the increase in blood pressure, functional and structural changes in the systemic vasculature are the final result of long-standing hypertension. These changes can occur in the macro- but also in the microvasculature. The supply of the tissues with oxygen, nutrients, and metabolites occurs almost exclusively in the microcirculation (which comprises resistance arterioles, capillaries and venules), and an adequate perfusion via the microcirculatory network is essential for the integrity of tissue and organ function. This review focuses on results from clinical studies in hypertensive patients, which have been performed in close cooperation with different clinical groups over the last three decades. Intravital microscopy was used to study skin microcirculation, microcatheters for the analysis of skeletal muscle microcirculation, the slit lamp for conjunctival microcirculation and the laser scanning ophthalmoscope for the measurement of the retinal capillary network. The first changes of the normal microcirculation can be found in about 93% of patients with essential hypertension, long before organ dysfunctions become clinically manifest. The earliest disorders were found in skin capillaries and thereafter in the retina and the skeletal muscle. In general, the disorders in the different areas were clearly correlated. While capillary rarefaction occurred mainly in the retina and the conjunctiva bulbi, in skin capillaries morphological changes were rare. A significant decrease of capillary erythrocyte velocities under resting conditions together with a marked damping of the postischemic hyperemia was found, both correlating with the duration of hypertension or WHO stage or the fundus hypertonicus stage. Also the mean oxygen tension in the skeletal muscle was correlated with the state of the disease. These data show that the microcirculatory disorders in hypertension are systemic and are hallmarks of the long-term complications of hypertension. There is now a large body of evidence that microvascular changes occur very early and may be important in their pathogenesis and progression.
Resumo:
Morphometric investigations using a point and intersection counting strategy in the lung often are not able to reveal the full set of morphologic changes. This happens particularly when structural modifications are not expressed in terms of volume density changes and when rough and fine surface density alterations cancel each other at different magnifications. Making use of digital image processing, we present a methodological approach that allows to easily and quickly quantify changes of the geometrical properties of the parenchymal lung structure and reflects closely the visual appreciation of the changes. Randomly sampled digital images from light microscopic sections of lung parenchyma are filtered, binarized, and skeletonized. The lung septa are thus represented as a single-pixel wide line network with nodal points and end points and the corresponding internodal and end segments. By automatically counting the number of points and measuring the lengths of the skeletal segments, the lung architecture can be characterized and very subtle structural changes can be detected. This new methodological approach to lung structure analysis is highly sensitive to morphological changes in the parenchyma: it detected highly significant quantitative alterations in the structure of lungs of rats treated with a glucocorticoid hormone, where the classical morphometry had partly failed.
Resumo:
BACKGROUND: Excessive and abnormal accumulation of alpha-synuclein (α-synuclein) is a factor contributing to pathogenic cell death in Parkinson's disease. The purpose of this study, based on earlier observations of Parkinson's disease cerebrospinal fluid (PD-CSF) initiated cell death, was to determine the effects of CSF from PD patients on the functionally different microglia and astrocyte glial cell lines. Microglia cells from human glioblastoma and astrocytes from fetal brain tissue were cultured, grown to confluence, treated with fixed concentrations of PD-CSF, non-PD disease control CSF, or control no-CSF medium, then photographed and fluorescently probed for α-synuclein content by deconvolution fluorescence microscopy. Outcome measures included manually counted cell growth patterns from day 1-8; α-synuclein density and distribution by antibody tagged 3D model stacked deconvoluted fluorescent imaging. RESULTS: After PD-CSF treatment, microglia growth was reduced extensively, and a non-confluent pattern with morphological changes developed, that was not evident in disease control CSF and no-CSF treated cultures. Astrocyte growth rates were similarly reduced by exposure to PD-CSF, but morphological changes were not consistently noted. PD-CSF treated microglia showed a significant increase in α-synuclein content by day 4 compared to other treatments (p ≤ 0.02). In microglia only, α-synuclein aggregated and redistributed to peri-nuclear locations. CONCLUSIONS: Cultured microglia and astrocytes are differentially affected by PD-CSF exposure compared to non-PD-CSF controls. PD-CSF dramatically impacts microglia cell growth, morphology, and α-synuclein deposition compared to astrocytes, supporting the hypothesis of cell specific susceptibility to PD-CSF toxicity.
Resumo:
The v-mos gene of Moloney murine sarcoma virus (Mo-MuSv) encodes a serine/threonine protein kinase capable of inducing cellular transformation. The c-mos protein is an important cell cycle regulator that functions during meiotic cell division cycles in germ cells. The overall function of c-mos in controlling meiosis is becoming better understood but the role of v-mos in malignant transformation of cells is largely unknown.^ In this study, v-mos protein was shown to be phosphorylated by M phase kinase in vitro and in vivo. The kinase activity and neoplastic transforming ability of v-mos is positively regulated by the phosphorylation. Together with the earlier finding of activation of M phase kinase by c-mos, these results raise the possibility of mutual regulation between M phase kinase and mos kinases.^ In addition to its functional interaction with the M phase kinase, the v-mos protein was shown to be present in the same protein complex with a cyclin-dependent kinase (cdk). In addition, an antibody that recognizes the cdk proteins was shown to co-precipitate the v-mos proteins in the interphase and mitotic cells transformed by p85$\sp{\rm gag-mos}$. Cdk proteins have been shown to be associated with nonmitotic cyclins which are potential oncogenes. The perturbation of cdk kinase or the activation of non-mitotic cyclins as oncogenes by v-mos could contribute directly to v-mos induced cellular transformation. v-mos proteins were also shown to interact with tubulin and vimentin, the essential components of microtubules and type IV intermediate filaments, respectively. The organizations of both microtubules and intermediate filaments are cell cycle-regulated. These results suggest that the v-mos kinase could be directly involved in inducing morphological changes typically seen in transformed cells.^ The interactions between the v-mos protein and these cell cycle control elements in regards to v-mos induced neoplastic transformation are discussed in detail in the text. ^
Resumo:
Trophism as a "clonal dominance" support mechanism for tumor cells is an unexplored area of tumor progression. This report presents evidence that the human melanoma low-affinity neurotrophin receptor (p75) can signal independently of its high-affinity tyrosine kinase counterparts, the TRK family of kinases. Signaling may be accomplished by a p75-associated purine-analog-sensitive kinase and results in enhanced invasion into a reconstituted basement membrane with a corresponding stimulation of matrix metalloproteinase-2 expression. Additionally, a "stress culture" survival assay was developed to mimic the growth limiting conditions encountered by melanoma cells in a rapidly growing primary tumor or metastatic deposit prior to neoangiogenesis. Under these conditions, p75, promotes the survival of high p75 expressing brain-colonizing melanoma cells. Extensive 70W melanoma cell-cell contact, which downregulates p75, immediately precedes the induction of cell death associated with diminished production of two key cell survival factors, bcl-2 and the p85 subunit of phosphoinositol-3-kinase, and an elevation in apoptosis promoting intracellular reactive oxygen species (ROSs). Since one function of bcl-2 may be to control the generation of ROSs via the antioxidant pathway, these cells may receive a apoptosis-prompting "double hit". 70W melanoma cell death occurred by an apoptotic mechanism displaying classical morphological changes including plasma membrane blebbing, loss of microvilli and redistribution of ribosomes. 70W apoptosis could be pharmacologically triggered following anti-p75 monoclonal antibody-mediated clustering of p75 receptors. 70W cells fluorescently sorted for high-p75 expression (p75$\sp{\rm H}$ cells) exhibited an augmented survival potential and a predilection to sort with the S + G2/M growth phase, relative to their low p75 expressing, p75$\sp{\rm L}$ counterparts. Apoptosis is significantly delayed by p75$\sp{\rm H}$ cells, whereas p75$\sp{\rm L}$ cells are exquisitely prone to initiate apoptosis. Importantly, the p75$\sp{\rm L}$ cells that survive apoptosis, highly re-expressed p75 and were remarkably responsive to exogenous NGF.^ These are the first data to implicate p75-mediated neurotrophism as an invasion and survival support mechanism employed by brain-metastatic cells. In particular, these results may have implications in little understood phenomena of tumor progression, such as the emergence of "clonal dominance" and tumor dormancy. ^
Resumo:
In normal lymphocytes an “inside-out” signal up-regulating integrin adhesion is followed by a ligand mediated “outside-in” signal for cell spreading. Although PKC mediates both events, distinct roles were found for different PLCs. The inhibition of phosphatidylinositol specific PLC decreased both cell adhesion and spreading on fibronectin in T cell receptor/CD28 activated peripheral blood T cells. However, inhibition of phosphatidylcholine specific PLC only blocked cell spreading and did not affect adhesion, indicating that “inside-out” signaling for the integrin α4β1 proceeds through phosphatidylinositol specific PLC and PKC, while the “outside-in” signal utilizes phosphatidylcholine specific PLC and PKC. Furthermore, β1 integrin chain mediated morphological changes in the T lymphocytic cell line HPB-ALL directly paralleled PKA activation, treatment of these cells with an inhibitory anti-β1 antibody blocked PKA activation and cell spreading, and this inhibition could be overcome by activating adenylate cyclase. Furthermore, inhibition of PKA was found to decrease the overall strength of cell adhesion or cellular avidity without affecting individual receptor affinity for soluble ligand. ^ When HPB-ALL cells interact with immobilized FN, two separate morphological phenotypes can be induced. Some cells flattened their cell body into a triangular shape and begin to migrate, while others extended a pseudopod from their stationary cell body. This second morphology recapitulates the shape changes observed during transendothelial migration. During these morphological changes, α4β1 integrins are internalized into endocytic vesicles that ultimately accumulate at the juncture between the cell body and an extending pseudopod. From this juncture, they are rapidly transported down the length of the pseudopod to its most distal end. ^ In addition to an accumulation of integrin containing vesicles, the pseudopod base was found to have increased amounts of the small GTPase RhoA and active PKA. The inhibition of PKA or RhoA resulted in lymphocytes with similar aberrant stellate morphologies. Furthermore, inhibition of PKA blocked the α4β1 mediated phosphorylation of RhoA. The co-localization of active PKA, RhoA and integrin containing endocytic vesicles indicates that integrin triggering can cause the rapid redistribution and activation of key signaling intermediates and raises the possibility that regulation of lymphocyte morphology by PKA and RhoA is through adhesion receptor recycling. ^
Resumo:
Bacterial meningitis causes neuronal apoptosis in the hippocampal dentate gyrus, which is associated with learning and memory impairments after cured disease. The execution of the apoptotic program involves pathways that converge on activation of caspase-3, which is required for morphological changes associated with apoptosis. Here, the time course and the role of caspase-3 in neuronal apoptosis was assessed in an infant rat model of pneumococcal meningitis. During clinically asymptotic meningitis (0-12 h after infection), only minor apoptotic damage to the dentate gyrus was observed, while the acute phase (18-24 h) was characterized by a massive increase of apoptotic cells, which peaked at 36 h. In the subacute phase of the disease (36-72 h), the number of apoptotic cells decreased to control levels. Enzymatic caspase-3 activity was significantly increased in hippocampal tissue of infected animals compared to controls at 22 h. The activated enzyme was localized to immature cells of the dentate gyrus, and in vivo activity was evidenced by cleavage of the amyloid-beta precursor protein. Intracisternal administration of the caspase-3-specific inhibitor Ac-DEVD-CHO significantly reduced apoptosis in the hippocampal dentate gyrus. In contrast to a study where the decrease of hippocampal apoptosis after administration of a pan-caspase inhibitor was due to downmodulation of the inflammatory response, our data demonstrate that specific inhibition of caspase-3 did not affect inflammation assessed by TNF-alpha and IL-1beta concentrations in the cerebrospinal fluid space. Taken together, the present results identify caspase-3 as a key effector of neuronal apoptosis in pneumococcal meningitis.
Resumo:
The nervous system is frequently affected in patients with the acquired immune deficiency syndrome (AIDS). In addition to opportunistic CNS infections and cerebral lymphomas, approx. 20% of the patients develop HIV-associated encephalopathies. Two major histopathological manifestations are observed. HIV leukoencephalopathy (progressive diffuse leukoencephalopathy) is characterized by a diffuse loss of myelin in the deep white matter of the cerebral and cerebellar hemispheres, with scattered multinucleated giant cells and microglia but scarce or absent inflammatory reaction. HIV encephalitis (multinucleated giant cell encephalitis) is associated with accumulations of multinucleated giant cells, inflammatory reaction and often focal necroses. In some patients, both patterns may overlap. In order to identify the HIV genome in the CNS, brain tissue from 27 patients was analyzed for the presence of HIV gag sequences using the polymerase chain reaction (PCR) and primers encoding a 109 base pair segment of the gag gene. Amplification of HIV gag succeeded in all 5 patients with clinical and histopathological evidence for HIV encephalopathy but was negative in the 20 AIDS patients with opportunistic bacterial, parasitic and/or viral infections or with cerebral lymphomas. These results strongly suggest that the evolution of histopathologically recognizable HIV-encephalopathies closely correlates with the presence and/or tissue concentration of HIV. Since there were no cases with amplified HIV DNA in the absence of HIV-associated tissue lesions, we conclude that harboring and replication of HIV in the CNS rapidly causes corresponding clinical and morphological changes of HIV-associated encephalopathies. In two children with severe HIV encephalomyelitis, large amounts of HIV gag and env transcripts were detected in affected areas of the brain and spinal cord by in situ hybridization.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Retinal degenerative diseases, e.g. retinitis pigmentosa, with resulting photoreceptor damage account for the majority of vision loss in the industrial world. Animal models are of pivotal importance to study such diseases. In this regard the photoreceptor-specific toxin N-methyl-N-nitrosourea (MNU) has been widely used in rodents to pharmacologically induce retinal degeneration. Previously, we have established a MNU-induced retinal degeneration model in the zebrafish, another popular model system in visual research. A fascinating difference to mammals is the persistent neurogenesis in the adult zebrafish retina and its regeneration after damage. To quantify this observation we have employed visual acuity measurements in the adult zebrafish. Thereby, the optokinetic reflex was used to follow functional changes in non-anesthetized fish. This was supplemented with histology as well as immunohistochemical staining for apoptosis (TUNEL) and proliferation (PCNA) to correlate the developing morphological changes. In summary, apoptosis of photoreceptors occurs three days after MNU treatment, which is followed by a marked reduction of cells in the outer nuclear layer (ONL). Thereafter, proliferation of cells in the inner nuclear layer (INL) and ONL is observed. Herein, we reveal that not only a complete histological but also a functional regeneration occurs over a time course of 30 days. Now we illustrate the methods to quantify and follow up zebrafish retinal de- and regeneration using MNU in a video-format.
Resumo:
Colostrum formation and lactogenesis in the mammary gland and the timing of parturition are regulated by endocrine signals. Changes in progesterone (P4) and prolactin (PRL) are considered key events that inhibit colostrum formation, trigger parturition, and signal the onset of lactation. The goal of our study was to determine if colostrum yield and composition and immunoglobulin transfer are affected by prepartum milking relative to the decrease in P4, peak of PRL, or occurrence of parturition. Twenty-three multiparous cows were randomly assigned to 1 of 2 groups: (1) control with first milking at 4h postcalving (CON, n=11), and (2) treatment group with first milking approximately 1d before calving and second milking at 4h after parturition (APM, n=12). Colostrum yields were recorded and proportional samples were analyzed for immunoglobulin G (IgG) concentration. Blood plasma samples for the analyses of P4 and PRL were collected 3 times daily at 8-h intervals for 4d prepartum and again taken at 4h after parturition. Total colostrum mass of APM cows was higher than that of CON cows. Immunoglobulin G concentration and protein content did not differ between antepartum milking in APM cows and postpartum milking in CON cows. Colostrum IgG concentration and protein content in APM cows at the postpartum milking were lower compared with the IgG concentration established at the prepartum (APM) and postpartum milkings of CON cows. Immunoglobulin G mass did not differ in first and second colostrum collection in APM cows but was lower compared with that of CON cows. The sum of IgG mass in APM cows (prepartum + postpartum collections) did not differ from that of CON cows. Lactose and fat in milk (concentration and mass) increased from first to second milking in APM cows. Total mass of lactose and fat in APM cows (prepartum + postpartum collections) was greater compared with that of CON cows. The finding that the time of milking relative to parturition, P4 decrease, and PRL peak slightly affected yield and quality of colostrum emphasizes the complex interactions of numerous endocrine and morphological changes occurring during colostrogenesis and lactogenesis in dairy cows. The considerably rapid transfer of immunoglobulins into colostrum of prepartum-milked cows within a few hours leads to the hypothesis that the transfer of IgG can be very fast and-contrary to earlier findings-persist at least until parturition.