911 resultados para Molecular Sequence Data.


Relevância:

90.00% 90.00%

Publicador:

Resumo:

South America and Oceania possess numerous floristic similarities, often confirmed by morphological and molecular data. The carnivorous Drosera meristocaulis (Droseraceae), endemic to the Neblina highlands of northern South America, was known to share morphological characters with the pygmy sundews of Drosera sect. Bryastrum, which are endemic to Australia and New Zealand. The inclusion of D. meristocaulis in a molecular phylogenetic analysis may clarify its systematic position and offer an opportunity to investigate character evolution in Droseraceae and phylogeographic patterns between South America and Oceania. was included in a molecular phylogenetic analysis of Droseraceae, using nuclear internal transcribed spacer (ITS) and plastid rbcL and rps16 sequence data. Pollen of D. meristocaulis was studied using light microscopy and scanning electron microscopy techniques, and the karyotype was inferred from root tip meristem. The phylogenetic inferences (maximum parsimony, maximum likelihood and Bayesian approaches) substantiate with high statistical support the inclusion of sect. Meristocaulis and its single species, D. meristocaulis, within the Australian Drosera clade, sister to a group comprising species of sect. Bryastrum. A chromosome number of 2n approx. 3236 supports the phylogenetic position within the Australian clade. The undivided styles, conspicuous large setuous stipules, a cryptocotylar (hypogaeous) germination pattern and pollen tetrads with aperture of intermediate type 78 are key morphological traits shared between D. meristocaulis and pygmy sundews of sect. Bryastrum from Australia and New Zealand. The multidisciplinary approach adopted in this study (using morphological, palynological, cytotaxonomic and molecular phylogenetic data) enabled us to elucidate the relationships of the thus far unplaced taxon D. meristocaulis. Long-distance dispersal between southwestern Oceania and northern South America is the most likely scenario to explain the phylogeographic pattern revealed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Ayes). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0-10.9% with the differences occurring mainly between 51 and 225 nucleotides 3' of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Background Plasmodium vivax is the most widely distributed human malaria, responsible for 70–80 million clinical cases each year and large socio-economical burdens for countries such as Brazil where it is the most prevalent species. Unfortunately, due to the impossibility of growing this parasite in continuous in vitro culture, research on P. vivax remains largely neglected. Methods A pilot survey of expressed sequence tags (ESTs) from the asexual blood stages of P. vivax was performed. To do so, 1,184 clones from a cDNA library constructed with parasites obtained from 10 different human patients in the Brazilian Amazon were sequenced. Sequences were automatedly processed to remove contaminants and low quality reads. A total of 806 sequences with an average length of 586 bp met such criteria and their clustering revealed 666 distinct events. The consensus sequence of each cluster and the unique sequences of the singlets were used in similarity searches against different databases that included P. vivax, Plasmodium falciparum, Plasmodium yoelii, Plasmodium knowlesi, Apicomplexa and the GenBank non-redundant database. An E-value of <10-30 was used to define a significant database match. ESTs were manually assigned a gene ontology (GO) terminology Results A total of 769 ESTs could be assigned a putative identity based upon sequence similarity to known proteins in GenBank. Moreover, 292 ESTs were annotated and a GO terminology was assigned to 164 of them. Conclusion These are the first ESTs reported for P. vivax and, as such, they represent a valuable resource to assist in the annotation of the P. vivax genome currently being sequenced. Moreover, since the GC-content of the P. vivax genome is strikingly different from that of P. falciparum, these ESTs will help in the validation of gene predictions for P. vivax and to create a gene index of this malaria parasite.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Self-incompatibility (SI) systems have evolved in many flowering plants to prevent self-fertilization and thus promote outbreeding. Pear and apple, as many of the species belonging to the Rosaceae, exhibit RNase-mediated gametophytic self-incompatibility, a widespread system carried also by the Solanaceae and Plantaginaceae. Pear orchards must for this reason contain at least two different cultivars that pollenize each other; to guarantee an efficient cross-pollination, they should have overlapping flowering periods and must be genetically compatible. This compatibility is determined by the S-locus, containing at least two genes encoding for a female (pistil) and a male (pollen) determinant. The female determinant in the Rosaceae, Solanaceae and Plantaginaceae system is a stylar glycoprotein with ribonuclease activity (S-RNase), that acts as a specific cytotoxin in incompatible pollen tubes degrading cellular RNAs. Since its identification, the S-RNase gene has been intensively studied and the sequences of a large number of alleles are available in online databases. On the contrary, the male determinant has been only recently identified as a pollen-expressed protein containing a F-box motif, called S-Locus F-box (abbreviated SLF or SFB). Since F-box proteins are best known for their participation to the SCF (Skp1 - Cullin - F-box) E3 ubiquitine ligase enzymatic complex, that is involved in protein degradation through the 26S proteasome pathway, the male determinant is supposed to act mediating the ubiquitination of the S-RNases, targeting them for the degradation in compatible pollen tubes. Attempts to clone SLF/SFB genes in the Pyrinae produced no results until very recently; in apple, the use of genomic libraries allowed the detection of two F-box genes linked to each S haplotype, called SFBB (S-locus F-Box Brothers). In Japanese pear, three SFBB genes linked to each haplotype were cloned from pollen cDNA. The SFBB genes exhibit S haplotype-specific sequence divergence and pollen-specific expression; their multiplicity is a feature whose interpretation is unclear: it has been hypothesized that all of them participate in the S-specific interaction with the RNase, but it is also possible that only one of them is involved in this function. Moreover, even if the S locus male and female determinants are the only responsible for the specificity of the pollen-pistil recognition, many other factors are supposed to play a role in GSI; these are not linked to the S locus and act in a S-haplotype independent manner. They can have a function in regulating the expression of S determinants (group 1 factors), modulating their activity (group 2) or acting downstream, in the accomplishment of the reaction of acceptance or rejection of the pollen tube (group 3). This study was aimed to the elucidation of the molecular mechanism of GSI in European pear (Pyrus communis) as well as in the other Pyrinae; it was divided in two parts, the first focusing on the characterization of male determinants, and the second on factors external to the S locus. The research of S locus F-box genes was primarily aimed to the identification of such genes in European pear, for which sequence data are still not available; moreover, it allowed also to investigate about the S locus structure in the Pyrinae. The analysis was carried out on a pool of varieties of the three species Pyrus communis (European pear), Pyrus pyrifolia (Japanese pear), and Malus × domestica (apple); varieties carrying S haplotypes whose RNases are highly similar were chosen, in order to check whether or not the same level of similarity is maintained also between the male determinants. A total of 82 sequences was obtained, 47 of which represent the first S-locus F-box genes sequenced from European pear. The sequence data strongly support the hypothesis that the S locus structure is conserved among the three species, and presumably among all the Pyrinae; at least five genes have homologs in the analysed S haplotypes, but the number of F-box genes surrounding the S-RNase could be even greater. The high level of sequence divergence and the similarity between alleles linked to highly conserved RNases, suggest a shared ancestral polymorphism also for the F-box genes. The F-box genes identified in European pear were mapped on a segregating population of 91 individuals from the cross 'Abbé Fétel' × 'Max Red Bartlett'. All the genes were placed on the linkage group 17, where the S locus has been placed both in pear and apple maps, and resulted strongly associated to the S-RNase gene. The linkage with the RNase was perfect for some of the F-box genes, while for others very rare single recombination events were identified. The second part of this study was focused on the research of other genes involved in the SI response in pear; it was aimed on one side to the identification of genes differentially expressed in compatible and incompatible crosses, and on the other to the cloning and characterization of the transglutaminase (TGase) gene, whose role may be crucial in pollen rejection. For the identification of differentially expressed genes, controlled pollinations were carried out in four combinations (self pollination, incompatible, half-compatible and fully compatible cross-pollination); expression profiles were compared through cDNA-AFLP. 28 fragments displaying an expression pattern related to compatibility or incompatibility were identified, cloned and sequenced; the sequence analysis allowed to assign a putative annotation to a part of them. The identified genes are involved in very different cellular processes or in defense mechanisms, suggesting a very complex change in gene expression following the pollen/pistil recognition. The pool of genes identified with this technique offers a good basis for further study toward a better understanding of how the SI response is carried out. Among the factors involved in SI response, moreover, an important role may be played by transglutaminase (TGase), an enzyme involved both in post-translational protein modification and in protein cross-linking. The TGase activity detected in pear styles was significantly higher when pollinated in incompatible combinations than in compatible ones, suggesting a role of this enzyme in the abnormal cytoskeletal reorganization observed during pollen rejection reaction. The aim of this part of the work was thus to identify and clone the pear TGase gene; the PCR amplification of fragments of this gene was achieved using primers realized on the alignment between the Arabidopsis TGase gene sequence and several apple EST fragments; the full-length coding sequence of the pear TGase gene was then cloned from cDNA, and provided a precious tool for further study of the in vitro and in vivo action of this enzyme.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Longstanding taxonomic ambiguity and uncertainty exist in the identification of the common (M. mustelus) and blackspotted (M. punctulatus) smooth-hound in the Adriatic Sea. The lack of a clear and accurate method of morphological identification, leading to frequent misidentification, prevents the collation of species-specific landings and survey data for these fishes and hampers the delineation of the distribution ranges and stock boundaries of the species. In this context, adequate species-specific conservation and management strategies can not be applied without risks of population declining and local extinction. In this thesis work I investigated the molecular ecology of the two smooth-hound sharks which are abundant in the demersal trawl surveys carried out in the NC Adriatic Sea to monitor and assess the fishery resources. Ecological and evolutionary relationships were assessed by two molecular tests: a DNA barcoding analysis to improve species identification (and consequently the knowledge of their spatial ecology and taxonomy) and a hybridization assay based on the nuclear codominant marker ITS2 to evaluate reproductive interactions (hybridization or gene introgression). The smooth-hound sharks (N=208) were collected during the MEDITS 2008 and 2010 campaigns along the Italian and Croatian coasts of the Adriatic Sea, in the Sicilian Channel and in the Algerian fisheries. Since the identification based on morphological characters is not strongly reliable, I performed a molecular identification of the specimens producing for each one the cytochrome oxidase subunit 1 (COI) gene sequence (ca. 640 bp long) and compared them with reference sequences from different databases (GenBank and BOLD). From these molecular ID data I inferred the distribution of the two target species in the NC Adriatic Sea. In almost the totality of the MEDITS hauls I found no evidence of species sympatry. The data collected during the MEDITS survey showed an almost different distribution of M. mustelus (confined along the Italian coasts) and M. punctulatus (confined along the Croatian coasts); just one sample (Gulf of Venice, where probably the ranges of the species overlap) was found to have catches of both the species. Despite these data results suggested no interaction occurred between my two target species at least during the summertime (the period in which MEDITS survey is carried out), I still wanted to know if there were inter-species reproductive interactions so I developed a simple molecular genetic method to detect hybridization. This method is based on DNA sequence polymorphism among species in the nuclear ribosomal Internal Transcribed Spacer 2 locus (ITS2). Its application to the 208 specimens collected raised important questions regarding the ecology of this two species in the Adriatic Sea. In fact results showed signs of hybridization and/or gene introgression in two sharks collected during the trawl survey of 2008 and one collected during the 2010 one along the Italian and Croatian coasts. In the case that it will be confirmed the hybrid nature of these individuals, a spatiotemporal overlapping of the mating behaviour and ecology must occur. At the spatial level, the northern part of the Adriatic Sea (an area where the two species occur with high frequency of immature individuals) could likely play the role of a common nursery area for both species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Über cDNA-Banken und RT-PCR wurden erstmals 15 Intermediärfilament-Proteine (IF-Proteine) des Flussneunauges Lampetra fluviatilis (Agnatha, kieferlose Wirbeltiere) kloniert und sequenziert: drei Typ I-Keratine, vier Typ II-Keratine, fünf keratinartige IF-Proteine (drei Kγ, zwei Kα), die Typ III-Proteine Vimentin und Desmin sowie ein Typ IV-Neurofilament-Protein (NF).Die IF-Proteine wurden aus verschiedenen Organen isoliert und durch zweidimensionale Polyacrylamid-Gelelektrophorese (2D-PAGE) aufgetrennt. Biochemische sowie massenspektrometrische Analysen anhand der 2D-PAGE ermöglichten in Kombination mit den Sequenzdaten die Identifizierung von Vimentin, Desmin sowie aller sequenzierten Keratine bis auf zwei der fünf Kα/Kγ-Proteine. Die meisten Keratine ließen sich darüber hinaus in die Kategorien „E“ (von „epidermal“) und „S“ (von „simple epithelial“) einteilen.Von den sequenzierten Keratinen ist das IIS-Keratin K8 wahrscheinlich ortholog zu den bekannten K8-Sequenzen höherer Vertebraten. Die Bezeichnung K18 für das einzige IS-Keratin des Neunauges in Anlehnung an das IS-Keratin K18 des Menschen basiert auf der stets beobachteten Koexpression mit K8 in einfachen Epithelien.Die Sequenz des Neunaugen-Vimentins zeigt große Übereinstimmungen mit den bekannten Desminsequenzen der Vertebraten. Die keratinartigen Proteine Kα und Kγ sind bis jetzt nur von Agnathen (Neunaugen und Schleimaale) bekannt.In molekularen Stammbäumen können K8, K18, Vimentin, Desmin und das NF_L des Neunauges gut als Außengruppe definiert werden.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Das Wolf-Hirschhorn-Syndrom (WHS) ist ein komplexes und variables Fehlbildungs- Retardierungssyndrom, das durch Deletion in der distalen Chromosomenregion 4p16.3 hervorgerufen wird und dessen Ätiologie und Pathogenese bisher weitgehend unverstanden sind. Die Zielsetzung in der vorliegenden Arbeit bestand in der Identifizierung und vorläufigen Charakterisierung neuer Gene, die an der Entstehung des Syndroms beteiligt sein könnten. Die Wolf-Hirschhorn-Syndrom-kritische Region (WHSCR) konnte zu Beginn der vorliegenden Arbeit auf einen ca. 2 Mb großen Bereich zwischen den Markern D4S43 und D4S142 eingegrenzt werden. Für die Identifizierung neuer Gene wurden zunächst drei größere genomische Cosmid-/PAC-Contigs (I-III) im Bereich der Marker D4S114 bis D4S142 erstellt und mittels Exonamplifikation auf transkribierte Bereiche (Exons) untersucht. Es konnten insgesamt 67 putative 'Exons' isoliert werden, von denen einige bereits bekannten Genen (ZNF141, PDEB, MYL5, GAK, DAGK4 und FGFR3) entsprechen. Zwei dieser Gene konnten im Rahmen dieser Arbeit erstmals (DAGK4) bzw. genauer (GAK) in die distale Region 4p16.3 kartiert werden. Die restlichen Exons können aufgrund von Homologievergleichen und/oder EST-cDNA-Homologien vermutlich neuen Genen oder auch Pseudogenen (z. B. YWEE1hu) zugeordnet werden. Durch die im Verlaufe der vorliegenden Arbeit publizierte weitere Eingrenzung der WHSCR auf einen 165 Kb-großen Bereich proximal des FGFR3-Gens konzentrierten sich weitere Untersuchungen auf die detaillierte Analyse der WHSCR zwischen dem Marker D4S43 und FGFR3. Mit Hilfe von Exonamplifikation bzw. computergestützter Auswertung vorliegender Sequenzdaten aus diesem Bereich ('GRAIL', 'GENSCAN' und Homologievergleiche in den EST-Datenbanken des NCBI) konnten mehrere neue Gene identifiziert werden. In distaler-proximaler Reihenfolge handelt es sich dabei um die Gene LETM1, 51, 43, 45, 57 und POL4P. LETM1 kodiert für ein putatives Transmembran-Protein mit einem Leucin-Zipper- und zwei EF-Hand-Motiven und könnte aufgrund seiner möglichen Beteiligung an der Ca2+-Homeostase und/oder der Signal-transduktion zu Merkmalen des WHS (Krampfanfällen, mentale Retardierung und muskuläre Hypotonie) beitragen. Das Gen 51 entspricht einem in etwa zeitgleich durch Stec et al. (1998) und Chesi et al. (1998) als WHSC1 bzw. MMSET bezeichnetem Gen und wurde daher nicht weiter charakterisiert. Es wird genauso wie das Gen 43, das zeitgleich von Wright et al. (1999b) als WHSC2 beschrieben werden konnte und eine mögliche Rolle bei der Transkriptionselongation spielt, ubiquitär exprimiert. Das in der vorliegenden Arbeit identifizierte Gen 45 zeigt demgegenüber ein ausgesprochen spezifisches Expressionsmuster (in Nervenzellen des Gehirns sowie in Spermatiden). Dies stellt zusammen mit der strukturellen Ähnlichkeit des putativen Genprodukts zu Signalmolekülen einen interessanten Zusammenhang zu Merkmalen des WHS (beispielsweise Kryptorchismus, Uterusfehlbildungen oder auch neurologische Defekte) her. Demgegenüber handelt es sich bei dem Gen 57 möglicherweise um ein trunkiertes Pseudogen des eRFS-Gens auf Chromosom 6q24 (Wallrapp et al., 1998). Das POL4P-Gen schließlich stellt allein aufgrund seiner genomischen Lokalisation sowie seiner möglichen Funktion (als DNA-Polymerase-ähnliches Gen) kein gutes Kandidatengen für spezifische Merkmale des Syndroms dar und wurde daher nicht im Detail charakterisiert. Um die Beteiligung der Gene an der Ätiologie und Pathogenese des Syndroms zu verstehen, ist die Entwicklung eines Mausmodells (über das Einfügen gezielter Deletionen in das Mausgenom) geplant. Um dies zu ermöglichen, wurde in der vorliegenden Arbeit die Charakterisierung der orthologen Region bei der Maus vorgenommen. Zunächst wurden die orthologen Gene der Maus (Letm1, Whsc1, Gen 43 (Whsc2h), Gen 45 und Pol4p) identifiziert. Durch die Erstellung sowie die genaue Kartierung eines murinen genomischen P1/PAC-Klon-Contigs konnte gezeigt werden, daß die murinen Gene Fgfr3, Letm1, Whsc1, Gen 43 (Whsc2h), Gen 45 und Pol4p sowie einige weitere der überprüften EST-cDNA-Klone der Maus in einem durchgehenden Syntänieblock zwischen Mensch (POL4P bis FGFR3) und Maus (Mmu 5.20) enthalten sind, der in seiner genomischen Ausdehnung in etwa den Verhältnissen beim Menschen (zwischen POL4P und FGFR3) entspricht.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bei dem 2010 von unserer Arbeitsgruppe entdeckten Mega-Hämocyanin handelt es sich um einen stark abgewandelten Typ des respiratorischen Proteins Hämocyanin, bestehend aus zwei flankierenden regulären Dekameren und einem zentralen Mega-Dekamer. Diese sind aus zwei immunologisch verschiedenen Untereinheiten mit ~400 bzw. ~550 kDa aufgebaut, die in unserer Arbeitsgruppe bereits proteinbiochemisch charakterisiert wurden. Im Zuge dieser Untersuchungen konnte zudem eine 3D-Rekonstruktion des Oligomers (13,5 MDa) mit einer Auflösung von 13Å erstellt werden. Das Ziel der vorliegenden Arbeit war die Aufklärung der Primärstruktur beider Polypeptide bei der Schnecke Melanoides tuberculata (MtH). Es gelang, die cDNAs der beiden Untereinheiten vollständig zu sequenzieren. Die zu typischen Dekameren assemblierende MtH400-Untereinheit umfasst 3445 Aminosäuren und besitzt eine theoretische Molekularmasse von 390 kDa. Nach dem Signalpeptid von 23 Aminosäuren Länge folgen die für Gastropoden-Hämocyanine typischen funktionellen Einheiten FU-a bis FU-h. Insgesamt verfügt die MtH400-Untereinheit über sechs potentielle N-Glykosylierungsstellen. Die MtH550-Untereinheit, welche mit 10 Kopien das Mega-Dekamer bildet, umfasst 4999 Aminosäuren und besitzt eine theoretische Molekularmasse von 567 kDa. Damit handelt es sich bei dieser Untereinheit um die zweitgrößte jemals bei einem Protein detektierte Polypeptidkette. Die MtH550-Untereinheit besteht aus einem Signalpeptid von 20 Aminosäuren Länge und den typischen Wand-FUs (FU-a bis FU-f). Daran anschließend folgen sechs weitere Varianten der FU-f (FU-f1 bis FU-f6). Die MtH550-Untereinheit verfügt über insgesamt zwölf potentielle N-Glykosylierungsstellen. Anhand der ermittelten Primärstrukturdaten wird klar, dass der auffällig vergrößerte Kragenbereich des Mega-Dekamers aus je 10 Kopien der FU-f1 bis FU-f6 besteht. Die ermittelten Sequenzdaten der beiden MtH-Untereinheiten weisen im Vergleich zu anderen Hämocyanin Sequenzen einige sehr charakteristische Indels sowie unübliche N-Glykosylierungsstellen auf. Es war zudem möglich, anhand einer molekularen Uhr den Entstehungszeitpunkt des Mega-Hämocyanins zu datieren (145 ± 35 MYA). Sowohl die Topologie als auch die berechneten Trennungszeitpunkte des an allen Verzweigungen gut unterstützten Stammbaums stimmen mit den bisher publizierten und auf Hämocyanindaten basierenden molekularen Uhren überein.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

I investigated the systematics, phylogeny and biogeographical history of Juncaginaceae, a small family of the early-diverging monocot order Alismatales which comprises about 30 species of annual and perennial herbs. A wide range of methods from classical taxonomy to molecular systematic and biogeographic approaches was used. rnrnIn Chapter 1, a phylogenetic analysis of the family and members of Alismatales was conducted to clarify the circumscription of Juncaginaceae and intrafamilial relationships. For the first time, all accepted genera and those associated with the family in the past were analysed together. Phylogenetic analysis of three molecular markers (rbcL, matK, and atpA) showed that Juncaginaceae are not monophyletic. As a consequence the family is re-circumscribed to exclude Maundia which is pro-posed to belong to a separate family Maundiaceae, reducing Juncaginaceae to include Tetroncium, Cycnogeton and Triglochin. Tetroncium is weakly supported as sister to the rest of the family. The reinstated Cycnogeton (formerly included in Triglochin) is highly supported as sister to Triglochin s.str. Lilaea is nested within Triglochin s. str. and highly supported as sister to the T. bulbosa complex. The results of the molecular analysis are discussed in combination with morphological characters, a key to the genera of the family is given, and several new combinations are made.rnrnIn Chapter 2, phylogenetic relationships in Triglochin were investigated. A species-level phylogeny was constructed based on molecular data obtained from nuclear (ITS, internal transcribed spacer) and chloroplast sequence data (psbA-trnH, matK). Based on the phylogeny of the group, divergence times were estimated and ancestral distribution areas reconstructed. The monophyly of Triglochin is confirmed and relationships between the major lineages of the genus were resolved. A clade comprising the Mediterranean/African T. bulbosa complex and the American T. scilloides (= Lilaea s.) is sister to the rest of the genus which contains two main clades. In the first, the widespread T. striata is sister to a clade comprising annual Triglochin species from Australia. The second clade comprises T. palustris as sister to the T. maritima complex, of which the latter is further divided into a Eurasian and an American subclade. Diversification in Triglochin began in the Miocene or Oligocene, and most disjunctions in Triglochin were dated to the Miocene. Taxonomic diversity in some clades is strongly linked to habitat shifts and can not be observed in old but ecologically invariable lineages such as the non-monophyletic T. maritima.rnrnChapter 3 is a collaborative revision of the Triglochin bulbosa complex, a monophyletic group from the Mediterranean region and Africa. One new species, Triglochin buchenaui, and two new subspecies, T. bulbosa subsp. calcicola and subsp. quarcicola, from South Africa were described. Furthermore, two taxa were elevated to species rank and two reinstated. Altogether, seven species and four subspecies are recognised. An identification key, detailed descriptions and accounts of the ecology and distribution of the taxa are provided. An IUCN conservation status is proposed for each taxon.rnrnChapter 4 deals with the monotypic Tetroncium from southern South America. Tetroncium magellanicum is the only dioecious species in the family. The taxonomic history of the species is described, type material is traced, and a lectotype for the name is designated. Based on an extensive study of herbarium specimens and literature, a detailed description of the species and notes on its ecology and conservation status are provided. A detailed map showing the known distribution area of T. magellanicum is presented. rnrnIn Chapter 5, the flower structure of the rare Australian endemic Maundia triglochinoides (Maundiaceae, see Chapter 1) was studied in a collaborative project. As the morphology of Maundia is poorly known and some characters were described differently in the literature, inflorescences, flowers and fruits were studied using serial mictrotome sections and scanning electron microscopy. The phylogenetic placement, affinities to other taxa, and the evolution of certain characters are discussed. As Maundia exhibits a mosaic of characters of other families of tepaloid core Alismatales, its segregation as a separate family seems plausible.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gregarine apicomplexans are a diverse group of single-celled parasites that have feeding stages (trophozoites) and gamonts that generally inhabit the extracellular spaces of invertebrate hosts living in marine, freshwater, and terrestrial environments. Inferences about the evolutionary morphology of gregarine apicomplexans are being incrementally refined by molecular phylogenetic data, which suggest that several traits associated with the feeding cells of gregarines arose by convergent evolution. The study reported here supports these inferences by showing how molecular data reveals traits that are phylogenetically misleading within the context of comparative morphology alone. We examined the ultrastructure and molecular phylogenetic positions of two gregarine species isolated from the spaghetti worm Thelepus japonicus: Selenidium terebellae Ray 1930 and S. melongena n. sp. The ultrastructural traits of S. terebellae were very similar to other species of Selenidium sensu stricto, such as having vermiform trophozoites with an apical complex, few epicytic folds, and a dense array of microtubules underlying the trilayered pellicle. By contrast, S. melongena n. sp. lacked a comparably discrete assembly of subpellicular microtubules, instead employing a system of fibrils beneath the cell surface that supported a relatively dense array of helically arranged epicytic folds. Molecular phylogenetic analyses of small subunit rDNA sequences derived from single-cell PCR unexpectedly demonstrated that these two gregarines are close sister species. The ultrastructural differences between these two species were consistent with the fact that S. terebellae infects the inner lining of the host intestines, and S. melongena n. sp. primarily inhabits the coelom, infecting the outside wall of the host intestine. Altogether, these data demonstrate a compelling case of niche partitioning and associated morphological divergence in marine gregarine apicomplexans. (C) 2014 Elsevier GmbH. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Several approaches can be used to determine the order of loci on chromosomes and hence develop maps of the genome. However, all mapping approaches are prone to errors either arising from technical deficiencies or lack of statistical support to distinguish between alternative orders of loci. The accuracy of the genome maps could be improved, in principle, if information from different sources was combined to produce integrated maps. The publicly available bovine genomic sequence assembly with 6x coverage (Btau_2.0) is based on whole genome shotgun sequence data and limited mapping data however, it is recognised that this assembly is a draft that contains errors. Correcting the sequence assembly requires extensive additional mapping information to improve the reliability of the ordering of sequence scaffolds on chromosomes. The radiation hybrid (RH) map described here has been contributed to the international sequencing project to aid this process. RESULTS: An RH map for the 30 bovine chromosomes is presented. The map was built using the Roslin 3000-rad RH panel (BovGen RH map) and contains 3966 markers including 2473 new loci in addition to 262 amplified fragment-length polymorphisms (AFLP) and 1231 markers previously published with the first generation RH map. Sequences of the mapped loci were aligned with published bovine genome maps to identify inconsistencies. In addition to differences in the order of loci, several cases were observed where the chromosomal assignment of loci differed between maps. All the chromosome maps were aligned with the current 6x bovine assembly (Btau_2.0) and 2898 loci were unambiguously located in the bovine sequence. The order of loci on the RH map for BTA 5, 7, 16, 22, 25 and 29 differed substantially from the assembled bovine sequence. From the 2898 loci unambiguously identified in the bovine sequence assembly, 131 mapped to different chromosomes in the BovGen RH map. CONCLUSION: Alignment of the BovGen RH map with other published RH and genetic maps showed higher consistency in marker order and chromosome assignment than with the current 6x sequence assembly. This suggests that the bovine sequence assembly could be significantly improved by incorporating additional independent mapping information.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The advent of experimental techniques capable of probing biomolecules and cells at high levels of resolution has led to a rapid change in the methods used for the analysis of experimental molecular biology data. In this article we give an overview over visualization techniques and methods that can be used to assess various aspects of genomic data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is an inherited retinal degenerative disease that is the leading cause of inherited blindness worldwide. Characteristic features of the disease include night blindness, progressive loss of visual fields, and deposition of pigment on the retina in a bone spicule-like pattern. RP is marked by extreme genetic heterogeneity with at least 19 autosomal dominant, autosomal recessive and X-linked loci identified. RP10, which maps to chromosome 7q, was the fifth autosomal dominant RP locus identified, and accounts for the early-onset disease in two independent families. Extensive linkage and haplotype analyses have been performed in these two families which have allowed the assignment of the disease locus to a 5-cM region on chromosome 7q31.3. In collaboration with Dr. Eric Green (National Center for Human Genome Research, National Institutes of Health), a well-characterized physical map of the region was constructed which includes YAC, BAC and cosmid coverage. The entire RP10 critical region resides within a 9-Mb well-characterized YAC contig. These physical maps not only provided the resources to undertake the CAIGES (cDNA amplification for identification of genomic expressed sequences) procedure for identification of retinal candidate genes within the critical region, but also identified a number of candidate genes, including transducin-$\gamma$ and blue cone pigment genes. All candidate genes examined were excluded. In addition, a number of ESTs were mapped within the critical region. EST20241, which was isolated from an eye library, corresponded to the 3$\sp\prime$ region of the ADP-ribosylation factor (ARF) 5 gene. ARF5, with its role in vesicle transport and possible participation in the regulation of the visual transduction pathway, became an extremely interesting candidate gene. Using a primer walking approach, the entire 3.2 kb genomic sequence of the ARF5 gene was generated and developed intronic primers to screen for coding region mutations in affected family members. No mutations were found in the ARF5 gene, however, a number of additional ESTs have been mapped to the critical region, and, as the large-scale sequencing projects get underway, megabases of raw sequence data from the RP10 region are becoming available. These resources will hasten the isolation and characterization of the RP10 gene. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the complete genome sequence of bovine pestivirus strain PG-2. The sequence data from this virus showed that PG-2 is closely related to the giraffe pestivirus strain H138. PG-2 and H138 belong to one pestivirus species that should be considered an approved member of the genus Pestivirus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Developmental assembly of the renal microcirculation is a precise and coordinated process now accessible to experimental scrutiny. Although definition of the cellular and molecular determinants is incomplete, recent findings have reframed concepts and questions about the origins of vascular cells in the glomerulus and the molecules that direct cell recruitment, specialization and morphogenesis. New findings illustrate principles that may be applied to defining critical steps in microvascular repair following glomerular injury. Developmental assembly of endothelial, mesangial and epithelial cells into glomerular capillaries requires that a coordinated, temporally defined series of steps occur in an anatomically ordered sequence. Recent evidence shows that both vasculogenic and angiogenic processes participate. Local signals direct cell migration, proliferation, differentiation, cell-cell recognition, formation of intercellular connections, and morphogenesis. Growth factor receptor tyrosine kinases on vascular cells are important mediators of many of these events. Cultured cell systems have suggested that basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) promote endothelial cell proliferation, migration or morphogenesis, while genetic deletion experiments have defined an important role for PDGF beta receptors and platelet-derived growth factor (PDGF) B in glomerular development. Receptor tyrosine kinases that convey non-proliferative signals also contribute in kidney and other sites. The EphB1 receptor, one of a diverse class of Eph receptors implicated in neural cell targeting, directs renal endothelial migration, cell-cell recognition and assembly, and is expressed with its ligand in developing glomeruli. Endothelial TIE2 receptors bind angiopoietins (1 and 2), the products of adjacent supportive cells, to signals direct capillary maturation in a sequence that defines cooperative roles for cells of different lineages. Ultimately, definition of the cellular steps and molecular sequence that direct microvascular cell assembly promises to identify therapeutic targets for repair and adaptive remodeling of injured glomeruli.