926 resultados para Model-Data Integration and Data Assimilation
Resumo:
This research addressed the development of a consolidated model designed especially to cover the security and usability attributes of a software product. As a starting point, we built a new usability model on the basis of well-known quality standards and models. We then used an existing security model to analyse the relationship between these two approaches. This analysis consisted of a systematic mapping study of the relationship between security and usability as global quality factors. We identified five relationship types: inverse, direct, relative, one-way inverse, and no relationship. Most authors agree that there is an inverse relationship between security and usability. However, this is not a unanimous finding, and this study unveils a number of open questions, like application domain dependency and the need to explore lower-level relationships between attribute subcharacteristics. In order to clarify the questions raised during the research, we conducted a second systematic mapping to further analyse the finer-grained structure of these factors, such as authentication as a subset of security and user efficiency as a subset of usability. The most relevant finding is that efficiency does not depend on the security level during the authentication process. There are other subfactors that require analysis. Accordingly, this research is the first part of a larger project to develop a full-blown consolidated model for security and usability.
Resumo:
An effective K-12 science education is essential to succeed in future phases of the curriculum and the e-Infrastructures for education provide new opportunities to enhance it. This paper presents ViSH Viewer, an innovative web tool to consume educational content which aims to facilitate e-Science infrastructures access through a next generation learning object called "Virtual Excursion". Virtual Excursions provide a new way to explore science in class by taking advantage of e-Infrastructure resources and their integration with other educational contents, resulting in the creation of a reusable, interoperable and granular learning object. In order to better understand how this tool can allow teachers and students a joyful exploration of e-Science, we also present three Virtual Excursion examples. Details about the design, development and the tool itself are explained in this paper as well as the concept, structure and metadata of the new learning object.
Resumo:
Traumatic brain injury and spinal cord injury have recently been put under the spotlight as major causes of death and disability in the developed world. Despite the important ongoing experimental and modeling campaigns aimed at understanding the mechanics of tissue and cell damage typically observed in such events, the differenti- ated roles of strain, stress and their corresponding loading rates on the damage level itself remain unclear. More specif- ically, the direct relations between brain and spinal cord tis- sue or cell damage, and electrophysiological functions are still to be unraveled. Whereas mechanical modeling efforts are focusing mainly on stress distribution and mechanistic- based damage criteria, simulated function-based damage cri- teria are still missing. Here, we propose a new multiscale model of myelinated axon associating electrophysiological impairment to structural damage as a function of strain and strain rate. This multiscale approach provides a new framework for damage evaluation directly relating neuron mechanics and electrophysiological properties, thus provid- ing a link between mechanical trauma and subsequent func- tional deficits.
Resumo:
Reducing the gap between water-limited potential yield and actual yield in oil palm production systems through intensification is seen as an important option for sustainably increasing palm oil production. Simulation models can play an important role in quantifying water-limited potential yield, and therefore the scope for intensification, but no oil palm model exists that is both simple enough and at the same time incorporates sufficient plant physiological knowledge to be generally applicable across sites with different growing conditions. The objectives of this study therefore were to develop a model (PALMSIM) that simulates, on a monthly time step, the potential growth of oil palm as determined by solar radiation and to evaluate model performance against measured oil palm yields under optimal water and nutrient management for a range of sites across Indonesia and Malaysia. The maximum observed yield in the field matches the corresponding simulated yield for dry bunch weight with a RMSE of 1.7 Mg ha?1 year?1 against an observed yield of 18.8 Mg ha?1. Sensitivity analysis showed that PALMSIM is robust: simulated changes in yield caused by modifying the parameters by 10% are comparable to other tree crop model evaluations. While we acknowledge that, depending on the soils and climatic environment, yields may be often water limited, we suggest a relatively simple physiological approach to simulate potential yield, which can be usefully applied to high rainfall environments and is considered as a first step in developing an oil palm model that also simulates water-limited potential yield. To illustrate the application possibil- ities of the model, PALMSIM was used to create a potential yield map for Indonesia and Malaysia by sim- ulating the growth and yield at a resolution of 0.1?. This map of potential yield is considered as a first step towards a decision support tool that can identify potentially productive, but at the moment degraded sites in Indonesia and Malaysia. ?
Resumo:
Traumatic brain injury and spinal cord injury have recently been put under the spotlight as major causes of death and disability in the developed world. Despite the important ongoing experimental and modeling campaigns aimed at understanding the mechanics of tissue and cell damage typically observed in such events, the differentiated roles of strain, stress and their corresponding loading rates on the damage level itself remain unclear. More specifically, the direct relations between brain and spinal cord tissue or cell damage, and electrophysiological functions are still to be unraveled. Whereas mechanical modeling efforts are focusing mainly on stress distribution and mechanistic-based damage criteria, simulated function-based damage criteria are still missing. Here, we propose a new multiscale model of myelinated axon associating electrophysiological impairment to structural damage as a function of strain and strain rate. This multiscale approach provides a new framework for damage evaluation directly relating neuron mechanics and electrophysiological properties, thus providing a link between mechanical trauma and subsequent functional deficits
Resumo:
Con motivo de la celebracio?n en 2008 del An?o Europeo del Dia?logo Intercultural, el Con- sejo de Europa promovio? una serie de encuentros y foros de debate en torno al papel de Europa en la gestio?n de la inmigracio?n, desde sus mu?ltiples dimensiones. Entre ellas, se encuentra el a?mbito deportivo, por su papel socializador como elemento cultural de dia?logo e identidad, aun- que tambie?n como espacio de confrontacio?n y discriminacio?n, que concierne tanto a participantes como espectadores, desde una perspectiva global y local. Con el objetivo de contrastar experien- cias y reflexiones a este respecto, tuvo lugar la primera conferencia europea con el nombre ?De- porte y Diversidad?, celebrada en Estrasburgo y organizada por la Agencia para la Educacio?n a trave?s del Deporte, el Consejo de Europa - a trave?s del EPAS - y la Universidad de Estrasburgo.
Resumo:
The cellular slime mold Dictyostelium discoideum is a widely used model system for studying a variety of basic processes in development, including cell–cell signaling, signal transduction, pattern formation, cell motility, and the movement of tissue-like aggregates of cells. Many aspects of cell motion are poorly understood, including how individual cell behavior produces the collective motion of cells observed within the mound and slug. Herein, we describe a biologically realistic model for motile D. discoideum cells that can generate active forces, that interact via surface molecules, and that can detect and respond to chemotactic signals. We model the cells as deformable viscoelastic ellipsoids and incorporate signal transduction and cell–cell signaling by using a previously developed model. The shape constraint restricts the admissible deformations but makes the simulation of a large number of interacting cells feasible. Because the model is based on known processes, the parameters can be estimated or measured experimentally. We show that this model can reproduce the observations on the chemotactic behavior of single cells, streaming during aggregation, and the collective motion of an aggregate of cells driven by a small group of pacemakers. The model predicts that the motion of two-dimensional slugs [Bonner, J. T. (1998) Proc. Natl. Acad. Sci. USA 95, 9355–9359] results from the same behaviors that are exhibited by individual cells; it is not necessary to invoke different mechanisms or behaviors. Our computational experiments also suggest previously uncharacterized phenomena that may be experimentally observable.
Resumo:
We describe the construction of a safe, replication-defective and efficient lentiviral vector suitable for in vivo gene delivery. The reverse transcription of the vector was found to be a rate-limiting step; therefore, promoting the reaction inside the vector particles before delivery significantly enhanced the efficiency of gene transfer. After injection into the brain of adult rats, sustained long-term expression of the transgene was obtained in the absence of detectable pathology. A high proportion of the neurons in the areas surrounding the injection sites of the vector expressed the transduced beta-galactosidase gene. This pattern was invariant in animals sacrificed several months after a single administration of the vector. Transduction occurs by integration of the vector genome, as it was abolished by a single amino acid substitution in the catalytic site of the integrase protein incorporated in the vector. Development of clinically acceptable derivatives of the lentiviral vector may thus enable the sustained delivery of significant amounts of a therapeutic gene product in a wide variety of somatic tissues.
Resumo:
Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.
Resumo:
We investigate the critical properties of the four-state commutative random permutation glassy Potts model in three and four dimensions by means of Monte Carlo simulations and a finite-size scaling analysis. By using a field programmable gate array, we have been able to thermalize a large number of samples of systems with large volume. This has allowed us to observe a spin-glass ordered phase in d=4 and to study the critical properties of the transition. In d=3, our results are consistent with the presence of a Kosterlitz-Thouless transition, but also with different scenarios: transient effects due to a value of the lower critical dimension slightly below 3 could be very important.
Resumo:
The phase diagram of soft spheres with size dispersion is studied by means of an optimized Monte Carlo algorithm which allows us to equilibrate below the kinetic glass transition for all size distributions. The system ubiquitously undergoes a first-order freezing transition. While for a small size dispersion the frozen phase has a crystalline structure, large density inhomogeneities appear in the highly disperse systems. Studying the interplay between the equilibrium phase diagram and the kinetic glass transition, we argue that the experimentally found terminal polydispersity of colloids is a purely kinetic phenomenon.
Resumo:
Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two questionnaires, one for teachers and the other for students. By analyzing the responses, we conclude that (i) teachers lack a quantum model for the emission and absorption of electromagnetic radiation capable of explaining the spectra, (ii) teachers and students share the same difficulties, and (iii) these difficulties concern the model of the atom, the model of radiation, and the model of the interaction between them.
Resumo:
No abstract.
Resumo:
On 22 January 2013, French President François Hollande and German Chancellor Angela Merkel gathered in Berlin to celebrate the 50th anniversary of the signing of the Élysée Treaty, the document that ended centuries of rivalry and warfare between their two countries. It is all too easy to forget the importance of Franco-German reconciliation. The 1950 Schuman Declaration, which led to the creation of the European Union’s (EU) predecessor, the European Coal and Steel Community (ECSC), sought to render the prospect of war between France and Germany ‘not only unthinkable but materially impossible’. Over 60 years later, when the EU was awarded the Nobel Peace Prize, the Norwegian Nobel Committee noted that indeed, ‘war between Germany and France is unthinkable’. Halfway around the world in Asia, the other theatre of World War II, tensions between China and Japan have arisen, with Taiwan and South Korea also in the fray. Nationalist movements in these countries have grown. This background brief lays out the issues for a timely reappraisal of the applicability, or otherwise, of the European integration and reconciliation processes to East Asia. The brief seeks to outline the contours of the historic act of Franco-German reconciliation, and its consequences ever since. Starting from a brief look at the history of rivalry and war between the two countries, the brief examines the events leading to the signing of the Élysée Treaty in 1963, and the development of Franco-German exchanges that have cemented the relationship. Difficulties between the countries are also raised. A timescale analysis of the opinion of the two publics is considered, as a measure of the success of Franco-German reconciliation.