919 resultados para Model knowledge conversion of Nonaka


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Sznajd model is a sociophysics model that mimics the propagation of opinions in a closed society, where the interactions favor groups of agreeing people. It is based in the Ising and Potts ferromagnetic models and, although the original model used only linear chains, it has since been adapted to general networks. This model has a very rich transient, which has been used to model several aspects of elections, but its stationary states are always consensus states. In order to model more complex behaviors, we have, in a recent work, introduced the idea of biases and prejudices to the Sznajd model by generalizing the bounded confidence rule, which is common to many continuous opinion models, to what we called confidence rules. In that work we have found that the mean field version of this model (corresponding to a complete network) allows for stationary states where noninteracting opinions survive, but never for the coexistence of interacting opinions. In the present work, we provide networks that allow for the coexistence of interacting opinions for certain confidence rules. Moreover, we show that the model does not become inactive; that is, the opinions keep changing, even in the stationary regime. This is an important result in the context of understanding how a rule that breeds local conformity is still able to sustain global diversity while avoiding a frozen stationary state. We also provide results that give some insights on how this behavior approaches the mean field behavior as the networks are changed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High yields of hemicellulosic and cellulosic sugars are critical in obtaining economical conversion of agricultural residues to ethanol. To optimize pretreatment conditions, we evaluated oxalic acid loading rates, treatment temperatures and times in a 2(3) full factorial design. Response-surface analysis revealed an optimal oxalic acid pretreatment condition to release sugar from the cob of Zea mays L ssp. and for Pichia stipitis CBS 6054. To ferment the residual cellulosic sugars to ethanol following enzymatic hydrolysis, highest saccharification and fermentation yields were obtained following pretreatment at 180 degrees C for 50 min with 0.024 g oxalic acid/g substrate. Under these conditions, only 7.5% hemicellulose remained in the pretreated substrate. The rate of cellulose degradation was significantly less than that of hemicellulose and its hydrolysis was not as extensive. Subsequent enzymatic saccharification of the residual cellulose was strongly affected by the pretreatment condition with cellulose hydrolysis ranging between 26.0% and 76.2%. The residual xylan/lignin ratio ranged from 0.31 to 1.85 depending on the pretreatment condition. Fermentable sugar and ethanol were maximal at the lowest ratio of xylan/lignin and at high glucan contents. The model predicts optimal condition of oxalic acid pretreatment at 168 degrees C, 74 min and 0.027 g/g of oxalic acid. From these findings, we surmised that low residual xylan was critical in obtaining maximal glucose yields from saccharification. Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibration-based energy harvesting has been investigated by several researchers over the last decade. The goal in this research field is to power small electronic components by converting the waste vibration energy available in their environment into electrical energy. Recent literature shows that piezoelectric transduction has received the most attention for vibration-to-electricity conversion. In practice, cantilevered beams and plates with piezoceramic layers are employed as piezoelectric energy harvesters. The existing piezoelectric energy harvester models are beam-type lumped parameter, approximate distributed parameter and analytical distributed parameter solutions. However, aspect ratios of piezoelectric energy harvesters in several cases are plate-like and predicting the power output to general (symmetric and asymmetric) excitations requires a plate-type formulation which has not been covered in the energy harvesting literature. In this paper. an electromechanically coupled finite element (FE) plate model is presented for predicting the electrical power output of piezoelectric energy harvester plates. Generalized Hamilton`s principle for electroelastic bodies is reviewed and the FE model is derived based on the Kirchhoff plate assumptions as typical piezoelectric energy harvesters are thin structures. Presence of conductive electrodes is taken into account in the FE model. The predictions of the FE model are verified against the analytical solution for a unimorph cantilever and then against the experimental and analytical results of a bimorph cantilever with a tip mass reported in the literature. Finally, an optimization problem is solved where the aluminum wing spar of an unmanned air vehicle (UAV) is modified to obtain a generator spar by embedding piezoceramics for the maximum electrical power without exceeding a prescribed mass addition limit. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance assessment as to water consumption in WC cisterns has contributed to the development of flushing system technologies, which allow smaller flushing volumes. The purpose of this work is to assess the performance of the the low water consumption requirement of WC cisterns with dual flushing system (6/3L), when compared to 6L flushing volume WC cisterns in multifamily buildings. The research methodology consisted of a case study in a multifamily residential building with submetering system, by monitoring the total water consumption and the two flushing systems using water meters installed in WC cisterns. By means of a mathematical model, a comparison of the design flowrate in the main branch was carried out considering the two types of WC cisterns. The results indicated that the water consumption in the 6L WC cistern was 20% in relation to the total domestic consumption, whereas the water consumption observed in the dual-flush WC cistern (6/3L) was 16%. The dual flushing system (6/3L) presented about 18% consumption reduction impact as compared to the 6 L system. The design flowrate values in the main branch, obtained by the mathematical model, were 0.35 L/s for systems with 6 L WC cistern and 0.34 L/s with dual-flush WC cistern (6/3 L), that is, a reduction of similar to 3%. Practical application: The knowledge of the performance in field of dual-flush WC cistern contributes to industry to improve this system and to users to aid their choice of technologies aimed at water conservation, and so assisting to the development of sustainable buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to model the synchronization of brain signals, a three-node fully-connected network is presented. The nodes are considered to be voltage control oscillator neurons (VCON) allowing to conjecture about how the whole process depends on synaptic gains, free-running frequencies and delays. The VCON, represented by phase-locked loops (PLL), are fully-connected and, as a consequence, an asymptotically stable synchronous state appears. Here, an expression for the synchronous state frequency is derived and the parameter dependence of its stability is discussed. Numerical simulations are performed providing conditions for the use of the derived formulae. Model differential equations are hard to be analytically treated, but some simplifying assumptions combined with simulations provide an alternative formulation for the long-term behavior of the fully-connected VCON network. Regarding this kind of network as models for brain frequency signal processing, with each PLL representing a neuron (VCON), conditions for their synchronization are proposed, considering the different bands of brain activity signals and relating them to synaptic gains, delays and free-running frequencies. For the delta waves, the synchronous state depends strongly on the delays. However, for alpha, beta and theta waves, the free-running individual frequencies determine the synchronous state. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermodynamic assessment of an Al(2)O(3)-MnO pseudo-binary system has been carried out with the use of an ionic model. The use of the electro-neutrality principles in addition to the constitutive relations, between site fractions of the species on each sub-lattice, the thermodynamics descriptions of each solid phase has been determined to make possible the solubility description. Based on the thermodynamics descriptions of each phase in addition to thermo-chemical data obtained from the literature, the Gibbs energy functions were optimized for each phase of the Al(2)O(3)-MnO system with the support of PARROT(R) module from ThemoCalc(R) package. A thermodynamic database was obtained, in agreement with the thermo-chemical data extracted from the literature, to describe the Al(2)O(3)-MnO system including the solubility description of solid phases. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this preliminary study eighteen p-substituted benzoic acid [(5-nitro-thiophen-2-yl)-methylene]-hydrazides with antimicrobial activity were evaluated against multidrug-resistant Staphylococcus aureus, correlating the three-dimensional characteristics of the ligands with their respective bioactivities. The computer programs Sybyl and CORINA were used, respectively, for the design and three-dimensional conversion of the ligands. Molecular interaction fields were calculated using GRID program. Calculations using Volsurf resulted in a statistically consistent model with 48 structural descriptors showing that hydrophobicity is a fundamental property in the analyzed biological response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Minimally processed refrigerated ready-to-eat fishes may offer health risk of severe infection to susceptible individuals due to contamination by the psychrotolerant bacterium L monocytogenes. In this work, inhibition of L monocytogenes by a plant extract and lactic acid bacteria (IAB) was studied in model fish systems kept at 5 degrees C for 35 days. For that, fillets of tropical fish ""surubim"" (Pseudoplatystoma sp.) and hydroalcoholic extract of the plant Lippia sidoides Cham. (""alecrim pimenta"") were used. Fish peptone broth (FPB), ""surubim"" broth and ""surubim"" homogenate were inoculated with combinations of L monocytogenes and bacteriocin-producing Carnobacterium maltaromaticum (C2 and A9b(+)) and non bacteriocin-producing C. maltaromaticum (A9b(-)), in the presence or absence of extract of ""alecrim pimenta"" (EAP). In all model systems, monocultures of L monocytogenes and carnobacteria reached final populations >= 10(8) CFU/ml after 35 days, except for L monocytogenes in ""surubim"" homogenate (10(4) CFU/ml). In FPB, EAP alone and combined with cultures of LAB inhibited L monocytogenes but carnobacteria without EAP were only weakly antilisterial. In ""surubim"" broth, EAP alone did not prevent L monocytogenes growth but cultures of carnobacteria combined or not with EAP inhibited L monocytogenes, with more pronounced effect being observed for C maltaromaticum C2, which produced bacteriocin. In ""surubim"" homogenate, EAP alone and combined with cultures of C. maltaromaticum A9b(-) and A9b(+) were strongly inhibitory to L monocytogenes, while C maltaromaticum C2 with EAP caused transient inhibition of L monocytogenes. No significant inhibition of L monocytogenes was observed for carnobacteria in ""surubim"" homogenate without EAP. In conclusion, it was observed that the use of EAP and cultures of carnobacteria have potential to inhibit L monocytogenes in fish systems and the applications should be carefully studied, considering the influence of food matrix. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose, An integrated ionic mobility-pore model for epidermal iontophoresis is developed from theoretical considerations using both the free volume and pore restriction forms of the model for a range of solute radii (r(j)) approaching the pore radii (r(p)) as well as approximation of the pore restriction form for r(j)/r(p) < 0.4. In this model, we defined the determinants for iontophoresis as solute size (defined by MV, MW or radius), solute mobility, solute shape, solute charge, the Debye layer thickness, total current applied, solute concentration, fraction ionized, presence of extraneous ions (defined by solvent conductivity), epidermal permselectivity, partitioning rates to account for interaction of unionized and ionized lipophilic solutes with the wall of the pore and electroosmosis. Methods, The ionic mobility-pore model was developed from theoretical considerations to include each of the determinants of iontophoretic transport. The model was then used to reexamine iontophoretic flux conductivity and iontophoretic flux-fraction ionized literature data on the determinants of iontophoretic flux. Results. The ionic mobility-pore model was found to be consistent with existing experimental data and determinants defining iontophoretic transport. However, the predicted effects of solute size on iontophoresis are more consistent with the pore-restriction than free volume form of the model. A reanalysis of iontophoretic flux-conductivity data confirmed the model's prediction that, in the absence of significant electroosmosis, the reciprocal of flux is linearly related to either donor or receptor solution conductivity. Significant interaction with the pore walls, as described by the model, accounted for the reported pH dependence of the iontophoretic transport for a range of ionizable solutes. Conclusions. The ionic mobility-pore iontophoretic model developed enables a range of determinants of iontophoresis to be described in a single unifying equation which recognises a range of determinants of iontophoretic flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalytic conversion of N2O to N-2 over Cu- and Co-impregnated activated carbon catalysts (Cu/AC and Co/AC) was investigated. Catalytic activity measurements were carried out in a fixed-bed flow reactor at atmospheric pressure. The catalysts were characterized by N-2 adsorption, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). This study aimed to provide insights into the following aspects: the metal dispersion, changes in pore structure, influence of catalyst loading on reaction, and reaction mechanism. Increasing loading of Co or Cu led to decreasing dispersion, but 20 wt % loading was an upper limit for optimal activities in both cases, with too high loading causing sintering of metal. Co exhibited a relatively better dispersion than Cu. Impregnation of metal led to a large decrease in surface area and pore volume, especially for 30 wt % of loading. 20 wt % of loading has proved to be the optimum for both Cu and Co, which shows the highest activity. Both N2O-Co/AC and -Cu/AC reactions are based upon a redox mechanism, but the former is limited by the oxygen transfer from catalysts to carbon, while N2O chemisorption on the surface of Cu catalyst controls the latter. The removal of oxygen from cobalt promotes the activity of Co/AC, but it is beneficial for Cu/AC to keep plenty of oxygen to maintain the intermediate oxidation of copper-Cu1+. The different nature of the two catalysts and their catalytic reaction mechanisms are closely related to their different electronegativities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalytic conversion of N2O to N-2 With potassium catalysts supported on activated carbon (K/AC) was investigated. Potassium proves to be much more active and stable than either copper or cobalt because potassium possesses strong abilities both for N2O chemisorption and oxygen transfer. Potassium redispersion is found to play a critical role in influencing the catalyst stability. A detailed study of the reaction mechanism was conducted based upon three different catalyst loadings. It was found that during temperature-programmed reaction (TPR), the negative oxygen balance at low temperatures (< 50 degrees C) is due to the oxidation of the external surface of potassium oxide particles, while the bulk oxidation accounts for the oxygen accumulation at higher temperatures (below ca. 270 degrees C). N2O is beneficial for the removal of carbon-oxygen complexes because of the formation of CO2 instead of CO and because of its role in making the chemisorption of produced CO2 on potassium oxide particles less stable. A conceptual three-zone model was proposed to clarify the reaction mechanism over K/AC catalysts. CO2 chemisorption at 250 degrees C proves to be an effective measurement of potassium dispersion. (C) 1999 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Percolative fragmentation was confirmed to occur during gasification of three microporous coal chars. Indirect evidence obtained by the variation of electrical resistivity (ER) with conversion was supported by direct observation of numerous fragments during gasification. The resistivity increases slowly at low conversions and then sharply after a certain conversion value, which is a typical percolation phenomenon suggesting the occurrence of internal fragmentation at high conversion. Two percolation models are applied to interpret the experimental data and determine the percolation threshold. A percolation threshold of 0.02-0.07 was found, corresponding to a critical conversion of 92-96% for fragmentation. The electrical resistivity variation at high conversions is found to be very sensitive to diffusional effects during gasification. Partially burnt samples with a narrow initial particle size range were also observed microscopically, and found to yield a large number of small fragments even when the particles showed no disintegration and chemical control prevailed. It is proposed that this is due to the separation of isolated clusters from the particle surface. The particle size distribution of the fragments was essentially independent of the reaction conditions and the char type, and supported the prediction by percolation theory that the number fraction distribution varies linearly with mass in a log-log plot. The results imply that perimeter fragmentation would occur in practical combustion systems in which the reactions are strongly diffusion affected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Although population viability analysis (PVA) is widely employed, forecasts from PVA models are rarely tested. This study in a fragmented forest in southern Australia contrasted field data on patch occupancy and abundance for the arboreal marsupial greater glider Petauroides volans with predictions from a generic spatially explicit PVA model. This work represents one of the first landscape-scale tests of its type. 2. Initially we contrasted field data from a set of eucalypt forest patches totalling 437 ha with a naive null model in which forecasts of patch occupancy were made, assuming no fragmentation effects and based simply on remnant area and measured densities derived from nearby unfragmented forest. The naive null model predicted an average total of approximately 170 greater gliders, considerably greater than the true count (n = 81). 3. Congruence was examined between field data and predictions from PVA under several metapopulation modelling scenarios. The metapopulation models performed better than the naive null model. Logistic regression showed highly significant positive relationships between predicted and actual patch occupancy for the four scenarios (P = 0.001-0.006). When the model-derived probability of patch occupancy was high (0.50-0.75, 0.75-1.00), there was greater congruence between actual patch occupancy and the predicted probability of occupancy. 4. For many patches, probability distribution functions indicated that model predictions for animal abundance in a given patch were not outside those expected by chance. However, for some patches the model either substantially over-predicted or under-predicted actual abundance. Some important processes, such as inter-patch dispersal, that influence the distribution and abundance of the greater glider may not have been adequately modelled. 5. Additional landscape-scale tests of PVA models, on a wider range of species, are required to assess further predictions made using these tools. This will help determine those taxa for which predictions are and are not accurate and give insights for improving models for applied conservation management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multiparametric extension of the anisotropic U model is discussed which maintains integrability. The R-matrix solving the Yang-Baxter equation is obtained through a twisting construction applied to the underlying U-q(sl (2/1)) superalgebraic structure which introduces the additional free parameters that arise in the model. Three forms of Bethe ansatz solution for the transfer matrix eigenvalues are given which we show to be equivalent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of this study is to evaluate the capacity of human dental pulp stem cells (hDPSC), isolated from deciduous teeth, to reconstruct large-sized cranial bone defects in nonimmunosuppressed (NIS) rats. To our knowledge, these cells were not used before in similar experiments. We performed two symmetric full-thickness cranial defects (5 x 8 mm) on each parietal region of eight NIS rats. In six of them, the left side was supplied with collagen membrane only and the right side (RS) with collagen membrane and hDPSC. In two rats, the RS had collagen membrane only and nothing was added at the left side (controls). Cells were used after in vitro characterization as mesenchymal cells. Animals were euthanized at 7, 20, 30, 60, and 120 days postoperatively and cranial tissue samples were taken from the defects for histologic analysis. Analysis of the presence of human cells in the new bone was confirmed by molecular analysis. The hDPSC lineage was positive for the four mesenchymal cell markers tested and showed osteogenic, adipogenic, and myogenic in vitro differentiation. We observed bone formation 1 month after surgery in both sides, but a more mature bone was present in the RS. Human DNA was polymerase chain reaction-amplified only at the RS, indicating that this new bone had human cells. The us e of hDPSC in NIS rats did not cause any graft. rejection. Our findings suggest that hDPSC is an additional cell resource for correcting large cranial defects in rats and constitutes a promising model for reconstruction of human large cranial defects in craniofacial surgery.