915 resultados para Mitochondrial Membranes
Resumo:
The sequencing analysis of the mitochondrial DNA control region (mtCR DNA) was performed to assess the genetic divergence and population structure of the Chinese sucker Myxocyprinus asiaticus (Cypriniformes Catostomidae) using four sample lots from natural populations of the Yangtze River. The mtCR DNA sequences of approximately 920 base pairs were obtained. A total of 223 nucleotide positions were polymorphic, and these defined 39 haplotypes. Of the 39 haplotypes, 37 (90%) were not shared, and among the populations as a whole there was little sharing of haplotypes. The average haplotype diversity (0.958) and the average nucleotide diversity (0.052) indicated a higher level of genetic diversity of Chinese sucker through the river. Analysis of molecular variation (AMOVA) of data revealed significant partitioning of variance (P<0.001) among populations (60.29%), and within populations (39.71%). The topology according to the neighbor joining and maximum parsimony methods showed mosaic composition of the 39 haplotypes, suggesting that the populations wore not completely divergent. The pairwise F statistic values, however, indicated that the population structuring existed to some extent among the geographic populations. There was a positive relationship between the aquatic distance and the genetic distance (Fst) among the populations (P<0.05). Based on our data, it is suggested that genetic drift, gene flow, and stochastic events are the possible factors influencing the population structure and genetic variation.
Resumo:
To explore phylogenetic relationships among glyptosternoid fishes, we determined nucleotide sequences of the complete mitochondrial cytochrome b gene region (1138 base pair). Thirteen species of glyptosternoid fishes and six species of non-glyptosternoids represent 10 sisorid genera were examined. Molecular phylogenetic trees were constructed using the maximum parsimony, minimum evolution, maximum likelihood, and Bayesian methods. Bayesian and maximum likelihood analyses support the monophyly of glyptosternoids, but our hypothesis of internal relationships differs from previous hypothesis. Results indicated that glyptosternoid is a monophyletic group and genera Glyptosternum and Exostoma are two basal species having a primitive position among it. Genera Euchiloglanis and Pareuchiloglanis form a sister-group. Then they form a sister-group with Pseudexostoma plus Oreoglanis. Our result also found that Pareuchiloglanis anteanalis might be considered as the synonyms of Parechiloglanis sinensis, and genus Euchiloglanis might have only one valid species, Euchiloglanis davidi. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
With 210 genera and 2010 species, Cyprinidae is the largest freshwater fish family in the world. Several papers, based on morphological and molecular data, have been published and have led to some solid conclusions, such as the close relationships between North American phoxinins and European leuciscins. However, the relationships among major subgroups of this family are still not well resolved, especially for those East Asian groups. In the present paper, the mitochondrial DNA (mtDNA) control region, 896-956 base pairs, of 17 representative species of East Asian cyprinids was sequenced and compared with those of 21 other cyprinids to study their phylogenetic relationships. After alignment, there were 1051 sites. The comparison between pairwise substitutions and HKY distances showed that the mtDNA control region was suitable for phylogenetic study. Phylogenetic analysis indicated that there are two principal lineages in Cyprinidae: Cyprinine and Leuciscine. In Cyprinine, the relationships could be a basal Labeoinae, an intermediate Cyprininae, and a diversified Barbinae (including Schizothroaxinae). In Leuciscine, Rasborinae is at the basal position; Gobioninae and Leuciscinae are sister groups; the East Asian cultrin-xenocyprinin taxa form a large monophyletic group with some small affiliated groups; and the positions of Acheilognathinae and Tincinae are still uncertain.
Resumo:
Although common carp is the major fish species in Asian and European aquaculture and many domestic varieties have occurred, there is a controversy about the origination of European domestic common carp. Some scientists affirmed that the ancestor of European domestic common carp was Danube River wild common carp, but others considered it might be Asian common carp. For elucidating origination of European domestic common carp, we chose two representative European domestic common carp strains (German mirror carp and Russian scattered scaled mirror carp) and one wild common carp strain of Cyprinus carpio carpio subspecies (Volga River wild common carp) and two Asian common carp strains, the Yangtze River wild common carp (Cyprinus carpio haematopterus) and traditionally domestic Xingguo red common carp, as experimental materials. ND5-ND6 and D-loop segments of mitochondrial DNA were amplified by polymerase chain reaction and analyzed through restriction fragment length polymorphism (RFLP) and sequencing respectively. The results revealed that HaeIII and DdeI digestion patterns of ND5-ND6 segment and sequences of control region were different between European subspecies C. carpio carpio and Asian subspecies C. carpio haematopterus. Phylogenetic analysis showed that German mirror carp and Russian scattered scaled mirror carp belonged to two subspecies, C. carpio carpio and C. carpio haematopterus, respectively. Therefore, there were different ancestors for domestic carp in Europe: German mirror carp was domesticated from European subspecies C. carpio carpio and Russian scattered scaled mirror carp originated from Asian subspecies C. carpio haematopterus.
Resumo:
Mitochondrial DNA ND5/6 region was studied by PCR-RFLP analysis among ten representative strains belonging to three subspecies (Cyprinus carpio carpio, Cyprinus carpio haematopterus and Cyprinus carpio rubrofuscus) of common carp (Cyprinus carpio L.). A total of 2.4 kb fragment was amplified and subjected to restriction endonuclease analysis with nine restriction endonucleases subsequently. The results indicated that each subspecies owned one hyplotype and four restriction enzymes (Dde I, HaeIII, Taq I and Mbo I) produced diagnostic restriction sites which could be used for discriminating the three subspecies and as molecular genetic markers for assistant selective breeding of common carp.
Resumo:
The mitochondrial DNA control region is amplified and sequenced from 8 genera and 10 species of gobiobotine fishes. The phylogenetic tree of Gobiobotinae and some representative species of other Cyprinid subfamilies obtained by the method of neighborhood joining, maximum likelihood and maximum parsimony with Danio rerio as an outgroup indicates that Gobiobotinae fishes are a monophyletic group which is close to Gobioninae subfamily. Gobiobotinae should be included into subfamily Gobioninae in terms of phylogenetic analysis. The research result supports that Gobiobotinae can be divided into genus Xenophysogobio and Gobiobotia. Xenophysogabio is the most primitive genera in the subfamily.
Resumo:
This study presents partial mitochondrial 16S rRNA sequences of 13 unionid bivalve species from China and analyses their relationships in combination with known data of 21 American mussels. According to our results, Chinese unionids, formerly regarded as two subfamilies, should be divided into three subfamilies: Ambleminae, Anodontinae and Unioninae. The genera Hyriopsis, Solenaia, Lamprotula and Ptychorhynchus, hitherto placed in Unioninae or Anodontinae, should be moved to the subfamily Ambleminae, demonstrated for the first time from China. The other genera recorded from China are suggested to belong to Anodontinae and Unioninae, which is in agreement with traditional classifications, except for the genus Lepidodesma.
Resumo:
In the present paper, nucleotide sequences (925-929 bases) of the mitochondrial D-loop region and complete cytochrome b gene (1140 bases) were determined and analysed to investigate the systematic status of the genus Distoechodon . CSB1, CSB2, CSB3, CSB-D and ETAS were successfully identified in the D-loop region. The sequence variations among different samples suggest that Distoechodon compressus is a valid species and has its distribution in Taiwan, and that D. tumirostris multispinnis does not seem to be a valid species.
Resumo:
The mitochondrial DNA cytochrome b gene was sequenced from 8 bagrid catfishes in China. Aligned with cytochrome b sequences from 9 bagrid catfishes in Japan, Korea and Russia retrieved from GenBank, and selected Silurus meridionalis, Liobagrus anguillicauda, Liobagrus reini and Phenacogrammus interruptus as outgroups, we constructed a matrix of 21 DNA sequences. The Kimura's two-parameter distances were calculated and molecule phylogenetic trees were constructed by using the maximum parsimony (MP) and neighbor-joining (NJ) methods. The results show that (i) there exist 3-bp deletions of mitochondrial cytochrome b gene compared with cypriniforms and characiforms; (ii) the molecular phylogenetic tree suggests that bagrid catfishes form a monophyletic group, and the genus Mystus is the earliest divergent in the East Asian bagrid catfishes, as well as the genus Pseudobagrus is a monophyletic group but the genus Pelteobagrus and Leiocassis are complicated; and 60 the evolution rate of the East Asian bagrids mitochondrial cytochrome b gene is about 0.18%-0.30% sequence divergence per million years.
Resumo:
The mitochondrial DNA control region of six cobitids and two catostomids was sequenced and compared with sequences of other cypriniforms to study their sequence variations. The extended termination associated sequence (ETAS) domain, central domain, and conserved sequence block (CSB) domain were partitioned and the ETAS sequence, CSB-D, CSB-E, ECSB-F, CSB1, CSB2, and CSB3 were identified. It is suggested that the "hairpin" TACAT-ATGTA is the key sequence of ETAS and GACATA is the symbol of CSB1. Phylogenetic analysis based on the CSB domain showed that all cyprinids evolved as one monophyletic group, while the non-cyprinid Cypriniformes could be another monophyly that is in accordance with the hypothesis proposed by Siebert. Further analysis of the phylogeny of the Cobitoidei was also conducted and it is tentatively suggested that their relationships are Catostomidae + (Gyrinocheilidae + (Botiinae + (Homalopteridae + (Cobitinae + Nemacheilinae)))).
Resumo:
Phylogenetic relationships within Metapenaeopsis remain largely unknown. The modern revision of the genus suggests that the shape of the petasma, followed by the presence of a stidulating organ, are the most important distinguishing taxonomic features. In the present study, phylogenetic relationships were studied among seven Metapenaeopsis species from the Indo-West Pacific based on partial sequences of mitochondrial 16S rRNA and cytochrome c oxidase I (COI) genes. Mean sequence divergence was 6.4% for 16S and 15.8% for COI. A strikingly large nucleotide distance (10.0% for 16S and 16.9% for COI) was recorded between M. commensalis, the only Indo-West Pacific species with a one-valved petasma, and the other species with a two-valved petasma. Phylogenetic analyses using neighbor-joining, maximum parsimony, and maximum likelihood generated mostly identical tree topologies in which M. commensalis is distantly related to the other species. Two clades were resolved for the remaining species, one with and the other without a stridulating organ, supporting the main groupings of the recent taxonomic revision. Results of the present study also indicate that the deep-water forms represent a relatively recent radiation in Metapenaeopsis.
Resumo:
10 mu m-thick ultra-thin Si (111) membranes for GaN epi-layers growth were successfully fabricated on silicon-on-insulator (SOI) substrate by backside etching the handle Si and buried oxide (BOX) layer. Then 1 mu m-thick GaN layers were deposited on these Si membranes by metal-organic chemical vapor deposition (MOCVD). The crack-free areas of 250 mu m, x 250 mu m were obtained on the GaN layers due to the reduction of thermal stress by using these ultra-thin Si membranes, which was further confirmed by the photoluminescence (PL) spectra and the simulation results from the finite element method calculation by using the software of ANSYS. In this paper, a newly developed approach was demonstrated to utilize micromechanical structures for GaN growth, which would improve the material quality of the epi-layers and facilitate GaN-based micro electro-mechanical system (MEMS) fabrication, especially the pressure sensor, in the future applications. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Proton-conducting membranes were prepared by polymerization of microemulsions consisting of surfactant-stabilized protic ionic liquid (PIL) nanodomains dispersed in a polymerizable oil, a mixture of styrene and acrylonitrile. The obtained PIL-based polymer composite membranes are transparent and flexible even though the resulting vinyl polymers are immiscible with PIL cores. This type of composite membranes have quite a good thermal stability, chemical stability, tunability, and good mechanical properties. Under nonhumidifying conditions, PIL-based membranes show a conductivity up to the order of 1 x 10(-1) S/cm at 160 degrees C, due to the well-connected PIL nanochannels preserved in the membrane. This type of polymer conducting membranes have potential application in high-temperature polymer electrolyte membrane fuel cells.
Resumo:
In order to understand the relationship between phospholipid molecular structures and their olfactory responses to odorants, we designed and synthesized four phosphatidylcholine analogues with different long hydrocarbon (CH) chains and selected three natural phospholipids with different head-groups. By using interdigital electrodes (IEs) as olfactory sensors (OSs), we measured the responses of the Ifs coated with these seven different lipid membranes to four alcohol vapors in a gas flow system. The Ifs voltage changes were recorded and the voltage-relative saturate vapor pressure (V-P/P degrees) curves were also plotted. It was found that with a methyl (-CH3) placed at the C-8 position in the 18-carbon chain, the olfactory responses could be improved about ten times and with conjugated double bonds (C=C) in the long chains, the sensitivity could be increased by 3 similar to 4 orders of magnitude. As to head-groups, choline is preferred over ethanolamine and serine in phospholipid structures in terms of high olfactory sensitivity: These results are expected to be useful in further designing and manufacturing lipid-mimicking OSs. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The mechanical properties and fracture behavior of silicon carbide (3C-SiC) thin films grown on silicon substrates were characterized using bulge testing combined with a refined load-deflection model for long rectangular membranes. Plane-strain modulus E-ps, prestress so, and fracture strength s(max) for 3C-SiC thin films with thickness of 0.40 mu m and 1.42 mu m were extracted. The E, values of SiC are strongly dependent on grain orientation. The thicker SIC film presents lower so than the thinner film due to stress relaxation. The s(max) values decrease with increasing film thickness. The statistical analysis of the fracture strength data were achieved by Weibull distribution function and the fracture origins were predicted.