927 resultados para Mitigation
Resumo:
Individuals' home ranges are constrained by resource distribution and density, population size, and energetic requirements. Consequently, home ranges and habitat selection may vary between individuals of different sex and reproductive conditions. Whilst home ranges of bats are well-studied in native habitats, they are often not well understood in modified landscapes, particularly exotic plantation forests. Although Chalinolobus tuberculatus (Vespertilionidae, Chiroptera) are present in plantation forests throughout New Zealand their home ranges have only been studied in native forest and forest-agricultural mosaic and no studies of habitat selection that included males had occurred in any habitat type. Therefore, we investigated C. tuberculatus home range and habitat selection within exotic plantation forest. Home range sizes did not differ between bats of different reproductive states. Bats selected home ranges with higher proportions of relatively old forest than was available. Males selected edges with open unplanted areas within their home ranges, which females avoided. We suggest males use these edges, highly profitable foraging areas with early evening peaks in invertebrate abundance, to maintain relatively low energetic demands. Females require longer periods of invertebrate activity to fulfil their needs so select older stands for foraging, where invertebrate activity is higher. These results highlight additional understanding gained when data are not pooled across sexes. Mitigation for harvest operations could include ensuring that areas suitable for foraging and roosting are located within a radius equal to the home range of this bat species.
Resumo:
Bushfire responsive design and management strategy at the bioregion scale. 248 Page document containing text, original designs, photographs, masterplans and critique - created as an alternative community-based strategy for risk mitigation and management reponse to bushfire in the Point Henry and Bremer Bay region of Western Australia. Document drafted as an alternative to a local government commissioned plan which had many shortcomings. It was presented as a 'powerpoint' presentaion at a public meeting in Bremer Bay on 7th April 2014 and disseminated to local community members and councillors to encourage public debate and feedback to the Shire of Jerramungup, WA.
Resumo:
30 minute invited presentation on design-led bushfire risk mitigatition stategies for reconciling the two (otherwise) opposing managment goals of bushfire safety and biodiversity conservation. Targeted at the S E Queensland national audience participants.
Resumo:
Non-thermal plasma (NTP) is a promising candidate for controlling engine exhaust emissions. Plasma is known as the fourth state of matter, where both electrons and positive ions co-exist. Both gaseous and particle emissions of diesel exhaust undergo chemical changes when they are exposed to plasma. In this project diesel particulate matter (DPM) mitigation from the actual diesel exhaust by using NTP technology has been studied. The effect of plasma, not only on PM mass but also on PM size distribution, physico-chemical structure of PM and PM removal mechanisms, has been investigated. It was found that NTP technology can significantly reduce both PM mass and number. However, under some circumstances particles can be formed by nucleation. Energy required to create the plasma with the current technology is higher than the benchmark set by the commonly used by the automotive industry. Further research will enable the mechanism of particle creation and energy consumption to be optimised.
Resumo:
Heavy metals that are built-up on urban impervious surfaces such as roads are transported to urban water resources through stormwater runoff. Therefore, it is essential to understand the predominant pathways of heavy metals to the build-up on roads in order to develop suitable pollution mitigation strategies to protect the receiving water environment. The study presented in this paper investigated the sources and transport pathways of manganese, lead, copper, zinc and chromium, which are heavy metals commonly present in urban road build-up. It was found that manganese and lead are contributed to road build-up primarily by direct deposition due to the re-suspension of roadside soil by wind turbulence, while traffic is the predominant source of copper, zinc and chromium to the atmosphere and road build-up. Atmospheric deposition is also the major transport pathway for copper and zinc, and for chromium, direct deposition by traffic sources is the predominant pathway.
Resumo:
Through its mandate to protect and preserve places of ‘outstanding universal value’, the World Heritage Convention provides an unlikely yet effective tool in global efforts to mitigate climate change. The practical efficacy of the Strategy to Assist States Parties to Implement Appropriate Management Responses (‘the Strategy’), which represents the World Heritage Committee’s primary response to the threats posed by climate change to World Heritage sites, is undermined by its weak stance on mitigation. This paper argues that the World Heritage Convention imposes stronger obligations on States Parties than those contained in the Strategy, including a duty on States Parties to commit to ‘deep cuts’ in greenhouse gas emissions. In order to ensure the continuing success of the World Heritage Convention States Parties must engage in extensive mitigation strategies without delay.
Resumo:
In recent times a widespread consensus on the reality and gravity of anthropogenic climate change has emerged. Perceived inadequacies in the Australian government’s legal and policy responses to climate change issues have resulted in environmental activists increasingly turning to the courts as a strategy to promote greater action to address adverse climate impacts. The efficacy of this strategy for achieving climate goals is limited by the time and expense of litigating, the restrictions inherent in environmental law administrative challenges, and the possibility that judicial decisions may be overruled by the legislature. To date, climate change litigation in Australia has met with varied success, yet its significance extends beyond the court room as an important mechanism for raising public, political and commercial awareness about climate change issues. Ultimately, however, the types of far-reaching changes needed to mitigate and manage adverse climate impacts require strong regulatory backing. The most effective approach to addressing the complex challenges posed by climate change is a coordinated suite of regulatory measures spearheaded by the Federal Government.