996 resultados para Minimum essential medium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1) It may seem rather strange that, in spite of the efforts of a considerable number of scientists, the problem of the origin of indian corn or maize still has remained an open question. There are no fossil remains or archaeological relics except those which are quite identical with types still existing. (Fig. 1). The main difficulty in finding the wild ancestor- which may still exist - results from the fact that it has been somewhat difficult to decide what it should be like and also where to look for it. 2) There is no need to discuss the literature since an excellent review has recently been published by MANGELSDORF and REEVES (1939). It may be sufficient to state that there are basically two hypotheses, that of ST. HILAIRE (1829) who considered Brazilian pod corn as the nearest relative of wild corn still existing, and that of ASCHERSON (1875) who considered Euchlaena from Central America as the wild ancestor of corn. Later hypotheses represent or variants of these two hypotheses or of other concepts, howewer generally with neither disproving their predecessors nor showing why the new hypotheses were better than the older ones. Since nearly all possible combinations of ideas have thus been put forward, it har- dly seems possible to find something theoretically new, while it is essential first to produce new facts. 3) The studies about the origin of maize received a new impulse from MANGELSDORF and REEVES'S experimental work on both Zea-Tripsacum and Zea-Euchlaena hybrids. Independently I started experiments in 1937 with the hope that new results might be obtained when using South American material. Having lost priority in some respects I decided to withold publication untill now, when I can put forward more concise ideas about the origin of maize, based on a new experimental reconstruction of the "wild type". 4) The two main aspects of MANGELSDORF and REEVES hypothesis are discussed. We agree with the authors that ST. HILAIRE's theory is probably correct in so far as the tunicata gene is a wild type relic gene, but cannot accept the reconstruction of wild corn as a homozygous pod corn with a hermaphroditic tassel. As shown experimentally (Fig. 2-3) these tassels have their central spike transformed into a terminal, many rowed ear with a flexible rachis, while possessing at the same time the lateral ear. Thus no explanation is given of the origin of the corn ear, which is the main feature of cultivated corn (BRIEGER, 1943). The second part of the hypothesis referring to the origin of Euchlaena from corn, inverting thus ASCHERSON's theory, cannot be accepted for several reasons, stated in some detail. The data at hand justify only the conclusion that both genera, Euchlaena and Zea, are related, and there is as little proof for considering the former as ancestor of the latter as there is for the new inverse theory. 5) The analysis of indigenous corn, which will be published in detail by BRIEGER and CUTLER, showed several very primitive characters, but no type was found which was in all characters sufficiently primitive. A genetical analysis of Paulista Pod Corn showed that it contains the same gene as other tunicates, in the IV chromosome, the segregation being complicated by a new gametophyte factor Ga3. The full results of this analysis shall be published elsewhere. (BRIEGER). Selection experiments with Paulista Pod Corn showed that no approximation to a wild ancestor may be obtained when limiting the studies to pure corn. Thus it seemed necessary to substitute "domesticated" by "wild type" modifiers, and the only means for achieving this substitution are hybridizations with Euchlaena. These hybrids have now been analysed init fourth generation, including backcrosses, and, again, the full data will be published elsewhere, by BRIEGER and ADDISON. In one present publication three forms obtained will be described only, which represent an approximation to wild type corn. 6) Before entering howewer into detail, some arguments against ST. HILAIRE's theory must be mentioned. The premendelian argument, referring to the instability of this character, is explained by the fact that all fertile pod corn plants are heterozygous for the dominant Tu factor. But the sterility of the homozygous TuTu, which phenotypically cannot be identified, is still unexplained. The most important argument against the acceptance of the Tunicata faetor as wild type relic gene was removed recently by CUTLER (not yet published) who showed that this type has been preserved for centuries by the Bolivian indians as a mystical "medicine". 7) The main botanical requirements for transforming the corn ear into a wild type structure are stated, and alternative solutions given. One series of these characters are found in Tripsacum and Euchlaena : 2 rows on opposite sides of the rachis, protection of the grains by scales, fragility of the rachis. There remains the other alternative : 4 rows, possibly forming double rows of female and male spikelets, protection of kernels by their glumes, separation of grains at their base from the cob which is thin and flexible. 8) Three successive stages in the reconstruction of wild corn, obtained experimentally, are discussed and illustrated, all characterized by the presence of the Tu gene. a) The structure of the Fl hybrids has already been described in 1943. The main features of the Tunicata hybrids (Fig. -8), when compared with non-tunicate hybrids (Fig. 5-6), consist in the absence of scaly protections, the fragility of the rachis and finally the differentiation of the double rows into one male and one female spikelet. As has been pointed out, these characters represent new phenotypic effects of the tunicate factor which do not appear in the presence of pure maize modifiers. b) The next step was observed among the first backcross to teosinte (Fig. 9). As shown in the photography, Fig. 9D, the features are essencially those of the Fl plants, except that the rachis is more teosinte like, with longer internodes, irregular four-row-arrangement and a complete fragility on the nodes. c) In the next generation a completely new type appeared (Fig. 10) which resembles neither corn nor teosinte, mainly in consequence of one character: the rachis is thin and flexible and not fragile, while the grains have an abscission layer at the base, The medium sized, pointed, brownish and hard granis are protected by their well developed corneous glumes. This last form may not yet be the nearest approach to a wild grass, and I shall try in further experiments to introduce other changes such as an increase of fertile flowers per spikelet, the reduction of difference between terminal and lateral inflorescences, etc.. But the nature of the atavistic reversion is alveadwy such that it alters considerably our expectation when looking for a still existing wild ancestor of corn. 9) The next step in our deductions must now consist in an reversion of our question. We must now explain how we may obtain domesticated corn, starting from a hypothetical wild plant, similar to type c. Of the several changes which must have been necessary to attract the attention of the Indians, the following two seem to me the most important: the disappearance of all abscission layers and the reduction of the glumes. This may have been brought about by an accumulation of mutations. But it seems much more probable to assume that some crossing with a tripsacoid grass or even with Tripsacum australe may have been responsible. In such a cross, the two types of abscission layer would be counterbalanced as shown by the Flhybrids of corn, Tripsacum and Euchlaena. Furthermore in later generations a.tu-allele of Tripsacum may become homozygous and substitute the wild tunicate factor of corn. The hypothesis of a hybrid origin of cultivated corn is not completely new, but has been discussed already by HARSHBERGER and COLLINS. Our hypothesis differs from that of MANGELSDORF and REEVES who assume that crosses with Tripsacum are responsible only for some features of Central and North American corn. 10) The following arguments give indirects evidence in support of our hypothesis: a) Several characters have been observed in indigenous corn from the central region of South America, which may be interpreted as "tripsacoid". b) Equally "zeoid" characters seem to be present in Tripsacum australe of central South-America. c) A system of unbalanced factors, combined by the in-tergeneric cross, may be responsible for the sterility of the wild type tunicata factor when homozygous, a result of the action of modifiers, brought in from Tripsacum together with the tuallele. d) The hybrid theory may explain satisfactorily the presence of so many lethals and semilethals, responsible for the phenomenon of inbreeding in cultivated corn. It must be emphasized that corn does not possess any efficient mechanism to prevent crossing and which could explain the accumulation of these mutants during the evolutionary process. Teosinte which'has about the same mechanism of sexual reproduction has not accumulated such genes, nor self-sterile plants in spite of their pronounced preference for crossing. 11) The second most important step in domestication must have consisted in transforming a four rowed ear into an ear with many rows. The fusion theory, recently revived byLANGHAM is rejected. What happened evidently, just as in succulent pXants (Cactus) or in cones os Gymnosperms, is that there has been a change in phyllotaxy and a symmetry of longitudinal rows superimposed on the original spiral arrangement. 12) The geographical distribution of indigenous corn in South America has been discussed. So far, we may distinguish three zones. The most primitive corn appears in the central lowlands of what I call the Central Triangle of South America: east of the Andies, south of the Amazone-Basin, Northwest of a line formed by the rivers São Prancisco-Paraná and including the Paraguay-Basin. The uniformity of the types found in this extremely large zone is astonishing (BRIEGER and CUTLER). To the west, there is the well known Andian region, characterized by a large number of extremely diverse types from small pop corn to large Cuszco, from soft starch to modified sweet corn, from large cylindrical ears to small round ears, etc.. The third region extends along the atlantic coast in the east, from the Caribean Sea to the Argentine, and is characterized by Cateto, an orange hard flint corn. The Andean types must have been obtained very early, and undoubtedly are the result of the intense Inca agriculture. The Cateto type may be obtained easily by crosses, for instance, of "São Paulo Pointed Pop" to some orange soft corn of the central region. The relation of these three South American zones to Central and North America are not discussed, and it seems essential first to study the intermediate region of Ecuador, Colombia and Venezuela. The geograprical distribution of chromosome knobs is rapidly discussed; but it seems that no conclusions can be drawn before a large number of Tripsacum species has been analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Med. Fak., Diss., 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The present work was carried out to study the effects of mineral nutrients in the yield as well as in the composition of cassava roots. The variety "Branca de Sta. Catarina" was grown by the sand culture method, the following treatments being used: N0 P0 K0, N0 P1 Kl, N1 P0 K1, N2 P1 K0, N2 P1 K1, N1 P2 K1, and N1 P1 K2, where the figures 0, 1, and 2 denote the relative proportion of a given element. The nutrients were given as follows: N = 35 grams of ammonium nitrate per pot loaded with 120 pounds of washed sand; P1 = 35 grams of monocalcium phosphate; Kl = 28 grams of sulfate of potash. Besides those fertilizers, each pot received 26 grams of magnesium sulfate and weekly doses of micronutrients as indicated by HOAGLAND and ARNON (1939). To apply the macronutrients the total doses were divided in three parts evenly distributed during the life cycle of cassava. 2. As far yield of roots and foliage are concerned, there are a few points to be considered: 2.1. the most striking effect on yield was verified when P was omitted from the fertilization; this treatment gave the poorest yields of the whole experiment; the need of that element for the phosphorylation of the starchy reserves explains such result; 2.2. phosphorus and nitrogen, under the experimental conditions, showed to be the most important nutrients for cassava; the effect of potassium in the weight of the roots produced was much less marked; it is noteworthy to mention, that in absence of potassium, the roots yield decreased whereas the foliage increased; as potassium is essential for the translocation of carbohydrates it is reasonable to admit that sugars produced in the leaves instead of going down and accumulate as starch in the roots were consumed in the production of more green matter. 3. Chemical analyses of roots revealed the following interesting points: 3.1. the lack of phosphorus brought about the most drastic reduction in the starch content of the roots; while the treatment N1 P1 K1 gave 32 per cent of starch, with NI PO Kl the amount found was 25 per cent; this result can be explained by the requirement of P for the enzymatic synthesis of starch; it has to be mentioned that the decrease in the starch content was associated with the remarkable drop in yield observed when P was omitted from the nutrient medium; 3.2. the double dosis of nitrogen in the treatment N2 P1 K1, gave the highest yields; however the increase in yield did not produce any industrial gain: whereas the treatment N1 P1 K1 gave 32 per cent of starch, by raising the N level to N2, the starch content fell to 24 per cent; now, considering the total amount of starch present in the roots, one can see, that the increase in roots yield did not compensate for the marked decrease in the starch content; that is, the amount of starch obtained with N1 P1 K1 does not differ statistically from the quantity obtained with N2 P1 K1; as far we know facts similar to this had been observed in sugar beets and sugar cane, as a result of the interaction between nitrogen and sugar produced; the biochemical aspect of the problem is very interesting: by raising the amount of assimilable nitrogen, instead of the carbohydrates polymerize to starch, they do combine to the amino groups to give proteinaceous materials; actually, it did happen that the protein content increased from 2.91 to 5.14 per cent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

7 (Second Series)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3 (Second Series)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(1) In the period 1965/77 fertilizer consumption in Brazil increased nearly fifteen foild from circa 200,000 tons of N + P2O5 + K2O to 3 million tons. During the fifteen years extending from 1950 to 1964 usage of the primary macronutrients was raised by a factor of 2 only. (2) Several explanations are given for the remarkable increase, namely: an experimental background which supplied data for recommendations of rates, time and type of application; a convenient governmental policy for minimum prices and rural credit; capacity of the industry to meet the demand of the fertilizer market; an adequate mechanism for the diffusion of the practice of fertilizer use to the farmer. (3) The extension work, which has caused a permanent change in the aptitude towards fertilization, was carried out in the traditional way by salesmen supported by a technical staff, as well as by agronomists of the official services. (4) Two new programs were started and conducted in a rather short time, both putting emphasis on the relatively new technology of fertilizer use. (5) The first program, conducted in the Southern part of the country, extended lab and green house work supplemented by a few field trials to small land owners - the so called "operação tatú" (operation armadillo). (6) The seconde program, covering a larger problem area in the Northeast and in Central Brazil, began directly in field as thousands of demonstrations and simple experiments with the participation of local people whose involvement was essential for the success of the initiative; in this case the official extension services, both foreign and national sources of funds, and universities did participate under the leadership of the Brazilian Association for the Diffusion of Fertilizers (ANDA). (7) It is felt that the Brazilian experience gained thereof could be useful to other countries under similar conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

5 (Jan. - June)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

10 (Second Series)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

8 (Second Series)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2 (Second Series)