1000 resultados para Microlite group
Resumo:
Photovoltaic energy conversion represents a economically viable technology for realizing collection of the largest energy resource known to the Earth -- the sun. Energy conversion efficiency is the most leveraging factor in the price of energy derived from this process. This thesis focuses on two routes for high efficiency, low cost devices: first, to use Group IV semiconductor alloy wire array bottom cells and epitaxially grown Group III-V compound semiconductor alloy top cells in a tandem configuration, and second, GaP growth on planar Si for heterojunction and tandem cell applications.
Metal catalyzed vapor-liquid-solid grown microwire arrays are an intriguing alternative for wafer-free Si and SiGe materials which can be removed as flexible membranes. Selected area Cu-catalyzed vapor-liquid solid growth of SiGe microwires is achieved using chlorosilane and chlorogermane precursors. The composition can be tuned up to 12% Ge with a simultaneous decrease in the growth rate from 7 to 1 μm/min-1. Significant changes to the morphology were observed, including tapering and faceting on the sidewalls and along the lengths of the wires. Characterization of axial and radial cross sections with transmission electron microscopy revealed no evidence of defects at facet corners and edges, and the tapering is shown to be due to in-situ removal of catalyst material during growth. X-ray diffraction and transmission electron microscopy reveal a Ge-rich crystal at the tip of the wires, strongly suggesting that the Ge incorporation is limited by the crystallization rate.
Tandem Ga1-xInxP/Si microwire array solar cells are a route towards a high efficiency, low cost, flexible, wafer-free solar technology. Realizing tandem Group III-V compound semiconductor/Si wire array devices requires optimization of materials growth and device performance. GaP and Ga1-xInxP layers were grown heteroepitaxially with metalorganic chemical vapor deposition on Si microwire array substrates. The layer morphology and crystalline quality have been studied with scanning electron microscopy and transmission electron microscopy, and they provide a baseline for the growth and characterization of a full device stack. Ultimately, the complexity of the substrates and the prevalence of defects resulted in material without detectable photoluminescence, unsuitable for optoelectronic applications.
Coupled full-field optical and device physics simulations of a Ga0.51In0.49P/Si wire array tandem are used to predict device performance. A 500 nm thick, highly doped "buffer" layer between the bottom cell and tunnel junction is assumed to harbor a high density of lattice mismatch and heteroepitaxial defects. Under simulated AM1.5G illumination, the device structure explored in this work has a simulated efficiency of 23.84% with realistic top cell SRH lifetimes and surface recombination velocities. The relative insensitivity to surface recombination is likely due to optical generation further away from the free surfaces and interfaces of the device structure.
Finally, GaP has been grown free of antiphase domains on Si (112) oriented substrates using metalorganic chemical vapor deposition. Low temperature pulsed nucleation is followed by high temperature continuous growth, yielding smooth, specular thin films. Atomic force microscopy topography mapping showed very smooth surfaces (4-6 Å RMS roughness) with small depressions in the surface. Thin films (~ 50 nm) were pseudomorphic, as confirmed by high resolution x-ray diffraction reciprocal space mapping, and 200 nm thick films showed full relaxation. Transmission electron microscopy showed no evidence of antiphase domain formation, but there is a population of microtwin and stacking fault defects.
Resumo:
As a result of the natural evolution of the economy, ever-changing, unpredictable and cyclical, companies must adapt as far as possible to the changes that have taken place in order to continue with their normal operating activities. Likewise, they should also try to maintain a structure for long-term growth, trying at all times to generate the maximum value. The main objective of this project is to provide financial advisory services to a business group, trying to forward solutions and measures that according to the author can be effective. For this end, the situation of the group in question is analysed from early 2008 to the present day, examining its evolution, what steps have been taken together with their corresponding results and the economic-financial situation of the company at the end of last year. Contact with the company was kept throughout the process of analysis and assessment trying to take advantage of the feedback generated so that the appropriate measures can be adopted if the management considers it to be adequate.
Resumo:
We report the measured group delay dispersion (GDD) of new crystals Yb:Gd2SiO5 (Yb:GSO), Yb:GdYSiO5 (Yb:GYSO) and Yb:LuYSiO5 (Yb:LYSO) over wavelengths from 1000nm to 1200nm, with a white-light interferometer. Those GDD data should be useful for the dispersion compensation for femtosecond pulse generation in the lasers with these new crystals as the gain media. (C) 2007 Optical Society of America
Resumo:
Analisis del sector de maquina herramienta y sus principales estrategias y analisis de una empresa importante del sector (DANOBAT GROUP).
Resumo:
505 p.
Resumo:
The Drought Monitoring workshop of October 1996, held at the Jarvis Leyland Hotel in Preston, England, established 4 priority issues for dealing with the question: How do we monitor the environment to pick up unexpected change ? 1. Review existing data, and review related study areas throughout the country. 2. Modelling and analysis of data 3. Monitoring / new data / sentinel species' 4. Public relations / Promotion. A group was set up to review issue 1 and feedback to the main group. This report establishes this feedback to the group and refers to existing data / monitoring, other Regional and national work, external Organisations and Recommendations. Appendix 1, is a summary of work completed at the workshop.