943 resultados para Microalgae. Biofuel. Photobioreactor. Transesterification
Resumo:
Esta dissertação tem como objetivo elaborar cenários para a internacionalização do etanol combustível através da metodologia da prospectiva estratégica. Após a descrição da história do desenvolvimento do etanol combustível na matriz energética brasileira, descreveram-se, além do atual mercado de etanol no Brasil e no Mundo, os principais aspectos que influenciarão no desenvolvimento de sua comercialização como commodity internacional. Para isto, é aplicada a metodologia de prospecção de cenários para a utilização do etanol no âmbito mundial. Para os cenários identificados, após a revisão das literaturas teórica e empírica sobre o tema, é elaborado um estudo que descreve estratégias de internacionalização possíveis para Petrobras Biocombustível S.A., subsidiária da Petrobras Petróleo Brasileiro S.A, responsável pelos negócios de etanol da companhia, tanto no Brasil quanto no exterior.
Resumo:
Mercados são instituições criadas para facilitar uma atividade de comercialização. Isto é possível porque um mercado é constituído por instituições que foram desenhadas para reduzir os custos de transação associados a este processo de troca. A partir dessas duas ideias, esta tese possui três objetivos principais. (i) Analisar por que a literatura de análise de cointegração tem mensurado estes custos de forma imprecisa. A principal razão é certa confusão entre os conceitos de custos de transação, de transporte e de comercialização. (ii) Propor um procedimento para mensurar indiretamente os custos de transação de mercado variáveis combinando os modelos de cointegração com mudança de regime e a estrutura teórica oferecidas pela Nova Economia Institucional. Este procedimento é aplicado para quantificar quanto custa comercializar etanol no mercado internacional usando suas atuais instituições. (iii) Por fim, usando os mesmos modelos e a mesma estrutura teórica, esta dissertação contesta a hipótese de que já existe um mercado internacional de etanol bem desenvolvido, tal qual a literatura tem assumido. De forma semelhante, também é avaliada a hipótese de que a remoção das barreiras comerciais norte-americanas para o etanol brasileiro seria uma condição suficiente para o desenvolvimento deste mercado internacional. Os testes aplicados rejeitam ambas as hipóteses.
Resumo:
O comércio de etanol entre Brasil e Estados Unidos é fortemente guiado por uma assimetria regulatória, que agrega valor ao etanol brasileiro ao gerar uma de-manda americana pelo produto derivado da cana de açúcar. A demanda advém dos mandatos de consumo de biocombustíveis estabelecidos no programa americano conhecido como Renewable Fuel Standard (RFS). A assimetria emerge pelo fato de RFS dar ao etanol brasileiro a classificação de Biocombustível Avançado, tornando-o para os Estados Unidos um produto mais nobre que o etanol derivado do amido de milho produzido domesticamente. Apesar dos processos produtivos tornarem os dois produtos diferenciados quanto ao teor de emissão de CO2 em seus ciclos de vida, o produto final é o mesmo: etanol anidro combustível. Portanto, quando a aquisição de etanol brasileiro pelos Estados Unidos é tal que torna o balanço do-méstico de oferta e demanda deficitário no Brasil, faz-se necessária a importação brasileira de etanol americano. Esse vai e vem do produto ocorre de forma simultâ-nea e, por isso, considera-se a existência de um fluxo redundante de etanol, geran-do custos logísticos, transacionais e emissões de CO2 que poderiam ser evitados. Dado que o objeto do interesse americano pelo produto brasileiro é o baixo índice de emissões de CO2 no ciclo de vida do etanol de cana de açúcar, o fluxo redun-dante de etanol pode ser substituído por transações de Créditos de Biocombustível Avançado, uma nova ideia que é desenvolvida ao longo deste trabalho. Para cada Crédito transacionado, os Estados Unidos contabilizarão em seu balanço a emissão de CO2 correspondente ao volume equivalente de etanol de cana de açúcar, trans-ferindo para o Brasil as emissões correspondentes ao mesmo volume de etanol de-rivado do amido de milho. A substituição do fluxo físico pela transação de contratos é a fonte de economia proposta no título deste trabalho.
Resumo:
Agricultural and agro-industrial residues are often considered both an environmental and an economical problem. Therefore, a paradigm shift is needed, assuming residues as biorefinery feedstocks. In this work cherimoya (Annona cherimola Mill.) seeds, which are lipid-rich (ca. 30%) and have a significant lignocellulosic fraction, were used as an example of a residue without any current valorization. Firstly, the lipid fraction was obtained by solvent extraction. Extraction yield varied from 13% to 28%, according to the extraction method and time, and solvent purity. This oil was converted into biodiesel (by base-catalyzed transesterification), yielding 76 g FAME/100 g oil. The obtained biodiesel is likely to be incorporated in the commercial chain, according to the EN14214 standard. The remaining lignocellulosic fraction was subjected to two alternative fractionation processes for the selective recovery of hemicellulose, aiming different products. Empirical mathematical models were developed for both processes, aiming future scale-up. Autohydrolysis rendered essentially oligosaccharides (10 gL-1) with properties indicating potential food/feed/pharmacological applications. The remaining solid was enzymatically saccharified, reaching a saccharification yield of 83%. The hydrolyzate obtained by dilute acid hydrolysis contained mostly monosaccharides, mainly xylose (26 gL-1), glucose (10 gL-1) and arabinose (3 gL-1), and had low content of microbial growth inhibitors. This hydrolyzate has proven to be appropriate to be used as culture media for exopolisaccharide production, using bacteria or microbial consortia. The maximum conversion of monosaccharides into xanthan gum was 0.87 g/g and kefiran maximum productivity was 0.07 g.(Lh)-1. This work shows the technical feasibility of using cherimoya seeds, and materials as such, as potential feedstocks, opening new perspectives for upgrading them in the biorefinery framework.
Resumo:
Sugarcane has an importance in Brazil due to sugar and biofuel production. Considering this aspect, there is basic research being done in order to understand its physiology to improve production. The aim of this research is the Base Excision Repair pathway, in special the enzyme MUTM DNA-glycosylase (formamidopyrimidine) which recognizes oxidized guanine in DNA. The sugarcane scMUTM genes were analyzed using four BACs (Bacterial Artificial Chromosome) from a sugarcane genomic library from R570 cultivar. The resulted showed the presence in the region that had homology to scMUTM the presence of transposable elements. Comparing the similarity, it was observed a highest similarity to Sorghum bicolor sequence, both nucleotide and peptide sequences. Furthermore, promoter regions from MUTM genes in some grass showed different cis-regulatory elements, among which, most were related to oxidative stress, suggesting a gene regulation by oxidative stress
Resumo:
Sugar esters are substances which possess surfactant, antifungical and bactericidal actions and can be obtained through two renewable sources of raw materials: sugars and vegetable oils. Their excellent biodegradability, allied to lhe fact that they are non toxic, insipid, inodorous, biocompatible, no-ionic, digestible and because they can resist to adverse conditions of temperature, pH and salinity, explain lhe crescent use of these substances in several sections of lhe industry. The objective of this thesis was to synthesize and characterize surfactants and polymers containing sugar branched in their structures, through enzymatic transesterification of vinyl esters and sugars, using alkaline protease from Bacillus subtilis as catalyst, in organic medium (DMF).Three types of sugars were used: L-arabinose, D-glucose and sucrose and two types of vinyl esters: vinyl laurate and vinyl adipate. Aiming to reach high conversions from substrates to products for a possible future large scale industrial production, a serie of variables was optimized, through Design of Experiments (DOE), using Response Surface Methodology (RSM).The investigated variables were: (1) enzyme concentration; (2) molar reason of substrates; (3) water/solvent rale; (4) temperature and (5) time. We obtained six distinct sugar esters: 5-0-lauroyl L-arabinose, 6-0-lauroyl D-glucose, 1'-O-lauroyl sucrose, 5-0-vinyladipoyl L-arabinose, 6-0-vinyladipoyl D-glucose and 1 '-O-vinyladipoyl sucrose, being lhe last three polymerizable. The progress of lhe reaction was monitored by HPLC analysis, through lhe decrease of sugar concentration in comparison to lhe blank. Qualitative analysis by TLC confirmed lhe formation of lhe products. In lhe purification step, two methodologies were adopted: (1) chromatographic column and (2) extraction with hot acetone. The acylation position and lhe chemical structure were determined by 13C-RMN. The polymerization of lhe three vinyl sugar esters was possible, through chemical catalysis, using H2O2 and K2S2O8 as initiators, at 60°C, for 24 hours. IR spectra of lhe monomers and respective polymers were compared revealing lhe disappearance of lhe vinyl group in lhe polymer spectra. The molar weights of lhe polymers were determined by GPC and presented lhe following results: poly (5-0-vinyladipoyl L-arabinose): Mw = 7.2 X 104; PD = 2.48; poly (6-0-vinyladipoyl D-glucose): Mw = 2.7 X 103; PD = 1.75 and poly (1'-O-vinyladipoyl sucrose): Mw = 4.2 X 104; PD = 6.57. The six sugar esters were submitted to superficial tension tests for determination of the critical micelle concentrations (CMC), which varied from 122 to 167 ppm. Finally, a study of applicability of these sugar esters, as lubricants for completion fluids of petroleum wells was' accomplished through comparative analysis of lhe efficiency of these sugar esters, in relation to three commercial lubricants. The products synthesized in this thesis presented equivalent or superior action to lhe tested commercial products
Resumo:
The use of biofuels remotes to the eighteenth century, when Rudolf Diesel made the first trials using peanut oil as fuel in a compression ignition engine. Based on these trials, there was the need for some chemical change to vegetable oil. Among these chemical transformations, we can mention the cracking and transesterification. This work aims at conducting a study using the thermocatalytic and thermal cracking of sunflower oil, using the Al-MCM-41 catalyst. The material type mesoporous Al-MCM-41 was synthesized and characterized by Hydrothermical methods of X-ray diffraction, scanning electron microscopy, nitrogen adsorption, absorption spectroscopy in the infrared and thermal gravimetric analysis (TG / DTG).The study was conducted on the thermogravimetric behavior of sunflower oil on the mesoporous catalyst cited. Activation energy, conversion, and oil degradation as a function of temperature were estimated based on the integral curves of thermogravimetric analysis and the kinetic method of Vyazovkin. The mesoporous material Al-MCM-41 showed one-dimensional hexagonal formation. The study of the kinetic behavior of sunflower oil with the catalyst showed a lower activation energy against the activation energy of pure sunflower oil. Two liquid fractions of sunflower oil were obtained, both in thermal and thermocatalytic pyrolisis. The first fraction obtained was called bio-oil and the second fraction obtained was called acid fraction. The acid fraction collected, in thermal and thermocatalytic pyrolisis, showed very high level of acidity, which is why it was called acid fraction. The first fraction was collected bio-called because it presented results in the range similar to petroleum diesel
Resumo:
In this work, biodiesel was produced from castor oil that was a byproduct glycerin. The molar ratio between oil and alcohol, as well as the use of (KOH) catalyst to provide the chemical reaction is based on literature. The best results were obtained using 1 mol of castor oil (260g) to 3 moles of methyl alcohol (138g), using 1.0% KOH as catalyst at a temperature of 260 ° C and shaken at 120 rpm. The oil used was commercially available, the process involves the reaction of transesterification of a vegetable oil with methyl alcohol. The product of this reaction is an ester, biodiesel being the main product and the glycerin by-product which has undergone treatment for use as raw material for the production of allyl alcohol. The great advantage of the use of glycerin to obtain allyl alcohol is that its use eliminates the large amount of waste of the biodiesel and various forms of insult to the environment. The reactions for the formation of allyl alcohol was conducted from formic acid and glycerin in a ratio 1/1, at a temperature of 260oC in a heater blanket, being sprayed by a spiral condenser for a period of 2 hours and the product obtained contains mostly the allylic alcohol .. The monitoring of reactions was performed by UV-Visible Spectrophotometer: FTIR Fourier transform, the analysis showed that these changes occur spectrometer indicating the formation of the product allylic alcohol (prop-2-en-1-ol) in the presence of water, This alcohol was appointed Alcohol GL. The absorption bands confirms that the reaction was observed in (υ C = C) 1470 -1600 cm -1 and (υ CO), 3610-3670 attributed to C = C groups and OH respectively. The thermal analysis was carried out in a thermogravimetric analyzer SDT Q600, where the mass and temperature are displayed against time, that allows checking the approximate rate of heating. The innovative methodology developed in the laboratory (LABTAM, UFRN), was able to treat the glycerine produced by transesterification of castor oil and used as raw material for production of allyl alcohol, with a yield of 80%, of alcohol, the same is of great importance in the manufacture of polymers, pharmaceuticals, organic compounds, herbicides, pesticides and other chemicals
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Seed germination and seedling establishment are critical processes for commercial plantation and depend directly on reserve mobilization as a source of cellular fuels and biosynthetic precursors. In this way, we investigated the coordination among reserve mobilization, metabolite partitioning, and mobilizing enzyme activities in Moringa oleifera Lam (moringa) an oil-seeded species employed in biofuel production. Seeds were germinated under controlled conditions and seedlings were grown hydroponically at a greenhouse. Samples were harvested at 0, 4, 8, 10, 12, 16, and 20 days after imbibition (DAI). The contents of dry mass (DM), neutral lipids (NL), soluble proteins (SP), starch, total soluble sugars (TSS), non-reducing sugars (NRS), and total free amino acids (TFAA) as the activity of isocitrate lyase (ICL), acid proteases, and amylases were determined. The mobilization of storage proteins was initiated during seed germination whereas the mobilization of storage lipids and starch was triggered throughout seedling establishment although all reserves have been depleted until 20 DAI. The partitioning of DM and metabolites to the roots and the shoots was uneven during seedling establishment. Low shoot/root ratio on the basis of DM could be related to the natural occurrence of moringa in drought climates. In the roots, TSS, NRS, and TFAA were accumulated from 12 to 16 DAI and then were consumed until the end of the experiment. In the shoots, TSS and TFAA were consumed in parallel with NRS accumulation from 12 to 20 DAI. The activity of ICL, acid proteases, and amylases was coordinated with the mobilization of lipids, proteins and starch respectively. Thus, we propose that the patterns of reserve mobilization and metabolite partitioning verified in moringa seem distinct from those found to other tree species and may be involved in metabolic strategies to enable environment colonization
Resumo:
It is verified worldwide an increasing concern with the protection of natural resources in the planet, a fact that became relevant in Brazil since the promulgation of the Constitution of 1988, based on the viewpoint of sustainable development, which seeks to promote economic activities in the country according to the need for conservation and preservation of natural resources for the use of present and future generations. In addition, we seek to reduce the differences that occur in our society by determining as a fundamental objective to be persecuted by the Federative Republic of Brazil the reduction of social and regional inequalities. A value that should also be observed in the context of economic activities developed here, since it is a general principle of financial and economic order of the country. Therefore, considering the exhaustion of world s reserves of fossil fuels, as well as the impacts on the environment, especially for the large emission of greenhouse effect gases, the debate about the need to change the global energy matrix increases while alternative energy sources appears as a bet to fulfill the contemporary aspirations for sustainability, and Brazil emerges in a very favorable position, because it has the essential natural conditions to allow this sector s full development. In this perspective, the work has the scope to analyze how the production of alternative energy sources may act in the search for concretization of constitutional values, to promote sustainable development for present and future generations, and to reduce regional and social inequalities in an attempt to improve the quality of life of the population. It will also be observed the current regulatory framework of alternative energy sources in the national laws to verify the existence of legal and institutional security, which is necessary to guarantee the full development of the sector in the country. And to investigate the expected results, it will be observed through the concrete evaluation of specific practices adopted in the industry, analyzing their actual compliance with the constitutional provisions under analysis, based on the examination of the possibility of using renewable biomass sources for biofuel production, promoting development to the country, indicating the opening lines about how this important sector can act to solve the energy challenge today
Resumo:
The gradual inclusion of biofuels is a necessary change that countries must include in their energy mixes. Energy sources still widely used in the world, such as oil and coal, are endowed with a high pollution load to the environment, bringing damages to the water, to the air and to humans as well. In addition, although there are conflicting studies, they are also identified as major causes of the greenhouse effect and the global warming phenomenon. They are, moreover, finite sources of energy, given that its reserves will surely run out. However, even if the introduction of biofuels, such as ethanol, in the energy mix is crucial for the survival of the present and future populations, this insertion cannot settle so disorderly and, thus, one must ensure the quality of these resources and promote transparency in international trade. In this manner, a certification process for ethanol is essential to attest that this biofuel meets the sustainable requirements defined for its production. Hence, this study sought to address the importance of the adoption of certification in the ethanol industry, according to the principle of sustainable development, by analyzing the evolution of its concept, its combination with the fundamental objectives sculptured in the Constitution of 1988, its regulation under Brazilian laws and the need for a balance between economic activities and the mentioned principle. The work also encompassed the criteria used to establish certification standards and their participating actors, combined with a study of ongoing initiatives. Finally, the consequences of the adoption of a certification process for ethanol in Brazil were presented, both in terms of sustainable development and in international trade
Resumo:
A demanda de recursos energéticos pelos sistemas de produção, aliada à escassez dos combustíveis fósseis, tem motivado a produção do Biodiesel, que é um combustível obtido de fontes renováveis. O objetivo deste trabalho foi realizar dois ensaios: o primeiro dinâmico, para avaliar o desempenho operacional utilizando como parâmetro o consumo de combustível, e o segundo, estático, para mensurar a opacidade da fumaça (material particulado) do motor de um trator agrícola, operando com diesel metropolitano e interior misturados ao Biodiesel de mamona, em sete proporções. O trabalho foi conduzido no Departamento de Engenharia Rural da UNESP/Jaboticabal - SP. Os resultados mostraram que o tipo de diesel influenciou no consumo de combustível e na opacidade da fumaça, sendo o diesel metropolitano de melhor qualidade; observou-se, também, que à medida que a proporção de Biodiesel aumentou, o mesmo ocorreu para o consumo de combustível; entretanto, a opacidade da fumaça reduziu com o acréscimo de Biodiesel até B75.
Resumo:
This work addresses biodiesel by transesterification from the use of waste frying oil as a possible technological alternative for both reducing greenhouse gas emissions and by presenting themselves as an environmental call to designate a rational use of oil when no longer played in the environment to become renewable energy. It has proposed location of a residual oil and fat treatment plant to produce biodiesel, using models of Location and Routing for the improvement of routes. To achieve the goal, questionnaires were administered in establishments that use oil or vegetable fat in their productive activities in order to quantify the residue, to analyze actions and environmental perception of people who work directly with the residue on the destination you are being given to oil and fat used. It has indicated using of two single setup location, the method of Center of Gravity and the model of Ardalan, a geographical point that minimizes the costs of transporting waste to the treatment plant. Actions have been proposed for the improvement of collection routes this residue using the Routing Method of Scanning, as an illustration. The results demonstrated the lack of knowledge of the people who deal directly with large amounts of waste, on the environmental impacts caused by their incorrect disposal. The models used were uniform since point out to neighborhoods in similar regions. The neighborhoods of Lagoa Nova / Morro Branco (Ardalan) and Nova Descoberta (Center of Gravity) as ideal for the installation of treatment plant. However, it is suggested to be tested other models that take into account new variables than those used (supply of waste and the distance between points). The routing through the method of scanning has shown that it is possible, in a simple way to optimize routes in order to reduce distances and therefore the logistics costs in the collection of such waste. Introducing a route as a test to gather the twenty largest oil suppliers used in sample frying, using as a main factor time 8 hour of working shift every day