967 resultados para Mg-doped ZnO quantum dots


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by applications to quantum computer architectures we study the change in the exchange interaction between neighbouring phosphorus donor electrons in silicon due to the application of voltage biases to surface control electrodes. These voltage biases create electro-static fields within the crystal substrate, perturbing the states of the donor electrons and thus altering the strength of the exchange interaction between them. We find that control gates of this kind can be used to either enhance or reduce the strength of the interaction, by an amount that depends both on the magnitude and orientation of the donor separation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phase equilibria in the Fe-Mg-Zn-O system in the temperature range 1100-1550degreesC in air have been experimentally studied using equilibration and quenching followed by electron probe X-ray microanalysis. The compositions of condensed phases in equilibrium in the binary MgO-ZnO system and the ternary Fe-Mg-O system have been reported at sub-solidus in air. Pseudo-ternary sections of the quaternary Fe-Mg-Zn-O system at 1100, 1250 and 1400degreesC in air were constructed using the experimental data. The solid solution of iron oxide, MgO and ZnO in the periclase (Mg, Zn, Fe)O, spinel (Mg2+, Fe2+, Zn2+)(x)Fe(2+y)3+O4 and zincite (Zn, Mg, Fe)O phases were found to be extensive under the conditions investigated. A continuous spinel solid solution is formed between the magnesioferrite (Mg2+, Fe2+)(x)Fe(2+y)3+O4 and franklinite (Zn2+, Fe2+)(x)Fe(2+y)3+O4 end-members at 1100 and 1250degreesC, extending to magnetite (Fe2+)(x)Fe(2+y)3+O4 at 1400degreesC in air. The compositions along the spinel boundaries were found to be non-stoichiometric, the magnitude of the non-stoichiometry being a function of composition and temperature in air. It was found that hematite dissolves neither MgO nor ZnO in air.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we investigate the effect of dephasing on proposed quantum gates for the solid-state Kane quantum computing architecture. Using a simple model of the decoherence, we find that the typical error in a controlled-NOT gate is 8.3x10(-5). We also compute the fidelities of Z, X, swap, and controlled Z operations under a variety of dephasing rates. We show that these numerical results are comparable with the error threshold required for fault tolerant quantum computation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to quantify quantum entanglement in two-impurity Kondo systems, we calculate the concurrence, negativity, and von Neumann entropy. The entanglement of the two Kondo impurities is shown to be determined by two competing many-body effects, namely the Kondo effect and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, I. Due to the spin-rotational invariance of the ground state, the concurrence and negativity are uniquely determined by the spin-spin correlation between the impurities. It is found that there exists a critical minimum value of the antiferromagnetic correlation between the impurity spins which is necessary for entanglement of the two impurity spins. The critical value is discussed in relation with the unstable fixed point in the two-impurity Kondo problem. Specifically, at the fixed point there is no entanglement between the impurity spins. Entanglement will only be created [and quantum information processing (QIP) will only be possible] if the RKKY interaction exchange energy, I, is at least several times larger than the Kondo temperature, T-K. Quantitative criteria for QIP are given in terms of the impurity spin-spin correlation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical method is introduced to determine the nuclear magnetic resonance frequency of a donor (P-31) doped inside a silicon substrate under the influence of an applied electric field. This phosphorus donor has been suggested for operation as a qubit for the realization of a solid-state scalable quantum computer. The operation of the qubit is achieved by a combination of the rotation of the phosphorus nuclear spin through a globally applied magnetic field and the selection of the phosphorus nucleus through a locally applied electric field. To realize the selection function, it is required to know the relationship between the applied electric field and the change of the nuclear magnetic resonance frequency of phosphorus. In this study, based on the wave functions obtained by the effective-mass theory, we introduce an empirical correction factor to the wave functions at the donor nucleus. Using the corrected wave functions, we formulate a first-order perturbation theory for the perturbed system under the influence of an electric field. In order to calculate the potential distributions inside the silicon and the silicon dioxide layers due to the applied electric field, we use the multilayered Green's functions and solve an integral equation by the moment method. This enables us to consider more realistic, arbitrary shape, and three-dimensional qubit structures. With the calculation of the potential distributions, we have investigated the effects of the thicknesses of silicon and silicon dioxide layers, the relative position of the donor, and the applied electric field on the nuclear magnetic resonance frequency of the donor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report that high quality PbS nanocrystals, synthesized in the strong quantum confinement regime, have quantum yields as high as 70% at room temperature. We use a combination of modelling and photoluminescence up-conversion to show that we obtain a nearly monodisperse size distribution. Nevertheless, the emission displays a large nonresonant Stokes shift. The magnitude of the Stokes shift is found to be directly proportional to the degree of quantum confinement, from which we establish that the emission results from the recombination of one quantum confined charge carrier with one localized or surface-trapped charge carrier. Furthermore, the surface state energy is found to lie outside the bulk bandgap so that surface-related emission only commences for strongly quantum confined nanocrystals, thus highlighting a regime where improved surface passivation becomes necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Halide octahedral molybdenum clusters [(Mo6X8)L6]n- possess luminescence properties that are highly promising for biological applications. These properties are rather dependent on the nature of both the inner ligands X (i.e. Cl, Br, or I) and the apical organic or inorganic ligands L. Herein, the luminescence properties and the toxicity of thiol-modified polystyrene microbeads (PS-SH) doped with [(Mo6X8)(NO3)6]2- (X=Cl, Br, I) were studied and evaluated using human epidermoid larynx carcinoma (Hep2) cell cultures. According to our data, the photoluminescence quantum yield of (Mo6I8)@PS-SH is significantly higher (0.04) than that of (Mo6Cl8)@PS-SH (6Br8)@PS-SH (6X8)@PS-SH showed that all three types of doped microbeads had no significant effect on the viability and proliferation of the cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We combine all the known experimental demonstrations and spectroscopic parameters into a numerical model of the Ho3+ -doped fluoride glass fiber laser system. Core-pumped and cladding-pumped arrangements were simulated for all the population-bottlenecking mitigation schemes that have been tested, and good agreement between the model and the previously reported experimental results was achieved in most but not in all cases. In a similar way to Er3+ -doped fluoride glass fiber lasers, we found that the best match with measurements required scaled-down rate parameters for the energy transfer processes that operate in moderate to highly concentrated systems. The model isolated the dominant processes affecting the performance of each of the bottlenecking mitigation schemes and pump arrangements. It was established that pump excited-state absorption is the main factor affecting the performance of the core-pumped demonstrations of the laser, while energy transfer between rare earth ions is the main factor controlling the performance in cladding-pumped systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the results of an experimental study aimed at improving the performance of actively Q-switched fiber lasers. Unlike generic design schemes employing photonic crystal fibers, largemodal diameter fibers or double-clad fibers, we demonstrate a high-power, actively Q-switched laser based on standard com- munication erbium doped fibers with peak irradiance beyond the state-of-the-art at 3.1 GW/cm2 . The laser had 2.2 kW peak power, 15.5 ns pulse duration and 36.8 µJ pulse energy. We have also investigated the dynamics of pulse generation and have success- fully suppressed pulse instabilities caused by backscattered laser emission reaching the pump laser diodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, temporal and statistical properties of quasi-CW fiber lasers have attracted a great attention. In particular, properties of Raman fiber laser (RFLs) have been studied both numerically and experimentally [1,2]. Experimental investigation is more challengeable, as the full generation optical bandwidth (typically hundreds of GHz for RFLs) is much bigger than real-time bandwidth of oscilloscopes (up to 60GHz for the newest models). So experimentally measured time dynamics is highly bandwidth averaged and do not provide precise information about overall statistical properties. To overpass this, one can use the spectral filtering technique to study temporal and statistical properties within optical bandwidth comparable with measurement bandwidth [3] or indirect measurements [4]. Ytterbium-doped fiber lasers (YDFL) are more suitable for experimental investigation, as their generation spectrum usually 10 times narrower. Moreover, recently ultra-narrow-band generation has been demonstrated in YDFL [5] which provides in principle possibility to measure time dynamics and statistics in real time using conventional oscilloscopes. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical modeling of cascade erbium-doped and holmium-doped fluoride fiber lasers is presented. Fiber lengths were optimized for cascade lasers that had fixed or free-running wavelengths using all known spectroscopic parameters. The performance of the cascade laser was tested against dopant concentration, energy transfer process, heat generation, output coupling, and pump schemes. The results suggest that the slope efficiencies and thresholds for both transitions increase with increasing Ho3+ or Er3+ concentration with the slope efficiency stabilizing after 1 mol% rare earth doping. The heat generation in the Ho3+-based system is lower compared to the Er 3+-based system at low dopant concentration as a result of the lower rates of multiphonon relaxation. Decreasing the output coupling for the upper (∼3 μm) transition decreases the threshold of the lower transition and the upper transition benefits from decreasing the output coupling for the lower transition for both cascade systems. The highest slope efficiency was achieved under counter-propagating pump conditions. Saturation of the output power occurs at comparatively higher pump power with dilute Er3+ doping compared with heavier doping. Overall, we show that the cascade Ho3+ -doped fluoride laser is the best candidate for high power output because of its higher slope efficiency and lower temperature excursion of the core and no saturation of the output. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Luminescent carbon dots (L-CDs) with high quantum yield value (44.7%) and controllable emission wavelengths were prepared via a facile hydrothermal method. Importantly, the surface states of the materials could be engineered so that their photoluminescence was either excitation-dependent or distinctly independent. This was achieved by changing the density of amino-groups on the L-CD surface. The above materials were successfully used to prepare multicolor L-CDs/polymer composites, which exhibited blue, green, and even white luminescence. In addition, the excellent excitation-independent luminescence of L-CDs prepared at low temperature was tested for detecting various metal ions. As an example, the detection limit of toxic Be2+ ions, tested for the first time, was as low as μM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report experimental study of vector solitons for the fundamental and harmonic mode-locked operation in erbiumdoper fiber lasers with carbon nanotubes based saturable absorbers and anomalous dispersion cavities. We measure evolution of the output pulses polarization and demonstrate vector solitons with various polarization attractors, including locked polarization, periodic polarization switching, and polarization precession.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, the concept of a random distributed feedback (DFB) lasing in optical fibers has been demonstrated [1], A number of different random DFB fiber lasers has been demonstrated so far including tunable, multiwalength, cascaded generation, generation in different spectral bands etc [2-7]. All systems are based on standard low-loss germanium doped silica core fibres having relatively low Rayleigh scattering coefficient. Thus, the typical length of random DFB fiber lasers is in the range from several kilometres to tens of kilometres to accumulate enough random feedback. Here we demonstrate for the first time to our knowledge the random DFB fiber laser based on a nitrogen doped silica core (N-doped) fiber. The fiber has several times higher Rayleigh scattering coefficient compared to standard telecommunication fibres. Thus, the generation is achieved in 500 meters long fiber only. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical solitons are important in the modern photonics. Passively mode locked erbium doped fiber lasers provide a neat platform to study soliton dynamics. Soliton interaction dynamics is important for various applications and has quite different manifestations, including e.g. such as bound state solitons [1], soliton rains [2]. Soliton interactions have been observed with different mode locking approaches such as figure-of-eight [3] and nonlinear polarization rotation [4]. Carbon nanotubes (CNT) have recently been widely applied as an efficient saturable absorber for passively mode locked fiber lasers. We have recently studied the polarization dynamics in a CNT mode locked vector soliton erbium doped fiber laser [5]. So far, the polarization dynamics of bound state solitons have yet to be investigated. In this report, we present a wide range of polarization dynamics of bound state solitons generated in a CNT mode locked erbium doped fiber laser. The fiber laser consists of ∼ 2 m highly doped erbium fiber (Liekki Er80-8/125) as the gain medium, an optical isolator to ensure unidirectional oscillation anda 980 nm laser diode is used to pump the gain through the 1550/980 nm wavelength division multiplexer. A fused 10:90 coupler is used to couple 10 % of the light out of the laser cavity and two in-line polarization controllers (NewPort) are used to control the birefringence of the cavity and polarization of the pump light respectively. The total cavity length is ∼ 7.8 m indicating a 25.7 MHz fundamental repetition rate. © 2013 IEEE.