960 resultados para Methylenetetrahydrofolate Reductase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article shows that thiosemicarbazones, semicarbazones and their metal complexes can exhibit target selectivity along with a wide pharmacological profile. Complexes of thiosemicarbazones with cytotoxic or antitumoral activity are presented, some of which show activity against cisplatinum-resistant cells. The inhibition mechanism of the enzyme ribonucleoside diphosphate reductase (RDR), involved in DNA syntheses, by alpha(N)-heterocyclic thiosemicarbazones is discussed. The encouraging results of clinical trials with the RDR inhibitor 3-aminopyridine-2-carboxaldehyde thiosemicarbazone ("Triapine") against rapidly growing tumors are outlined. Examples are also given of thiosemicarbazones with antiviral and antimicrobial activity. The possible applications of semicarbazones as anticonvulsants with low toxicity and good therapeutic index are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review presents studies on methyl coenzyme M reductase, the biological system Factor 430 (F430) and the use of nickel(II) complexes as structural and functional models. The ability of F430 and nickel(II) macrocycle complexes to mediate the reductive dehalogenation of cyclohexyl halogens and the CH3-S bond cleavage of methyl CoM (by sodium borohydride and some intermediate species) proposed for the catalytic cycle of the biological system F430 was reviewed. The importance of the structure of the nickel complexes and the condition of the catalytic reduction reaction are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statins are the most used drugs for the treatment of hyperlipidemia in primary and secondary prevention, with the aim of decreasing the levels of plasmatic cholesterol- lipoproteins. Owing to their structural similarity to the substrate HMG-CoA (3-hydroxy-3-methylglutaryl-CoA), they inhibit the HMG-CoA reductase enzyme, disrupting the cholesterol biosynthesis. Currently, six therapeutic statins are available: lovastatin (Mevacor) and pravastatin (Pravachol), which are natural, sinvastatin (Zocor), a semi-synthetic derivative, and the totally synthetic statins, fluvastatin (Lescol), atorvastatin (Lipitor) and rosuvastatin (Crestor). Recent investigations have showed other important effects of statins, such as antineoplastic action and improvement in endothelial function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosoma cruzi is a protozoan parasite that causes a severe disease (Chagas'disease) in Central and South America. The currently available chemotherapeutic agents against this disease are still inadequate. The enzyme trypanothione reductase (TR) is considered a validated molecular target for the development of new drugs against this parasite. In this regard, a series of arylfurans based on 2,5-bis-(4-acetamidophenyl)furan was synthesized and tested for their in vitro inhibitory activity against TR. Molecular modeling studies of putative enzyme-inhibitor complexes revealed a possible mechanism of interaction. From synthesized compounds, a benzylaminofuran derivative was found to be more active than the lead compound.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromium toxicity affects redox reactions within plant cells, generating detrimental reactive oxygen species. Glutathione is an antioxidant peptide and also a substrate for the production of phytochelatins, which are chelating peptides reported to mitigate Cr3+ toxicity in plants. In this study, Brachiaria brizantha (B. brizantha) and Brachiaria ruziziensis (B. ruziziensis) seedlings were evaluated for physiological responses and glutathione production following the addition of zero or 5 mg L-1 Cr3+ to the nutrient solution. Glutathione levels were determined by colorimetric analysis at 412 nm using 5,5'-dithio-bis(2-nitrobenzoic acid) as a chromophore reagent and recovery with glutathione reductase (with evaluations at days 10 and 20 of continuous growth). The assessments were carried out in a completely randomized design with 2 authentic replications, and arranged in a 23 factorial. Cr3+ caused an average increase of 0.76 mg g-1 in the initial glutathione content. However, by day 20 there was an average reduction of 3.63 mg g-1. Chromium-affected physiological detrimental responses, albeit detected in both species, were less-pronounced in B. ruziziensis, along with a much higher level of glutathione. This study indicates that B. ruziziensis has a greater tolerance for chromium toxicity than B. brizantha, and that glutathione is likely to be involved in the mitigation of chromium stress in B. ruziziensis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photosynthesis, the process in which carbon dioxide is converted into sugars using the energy of sunlight, is vital for heterotrophic life on Earth. In plants, photosynthesis takes place in specific organelles called chloroplasts. During chloroplast biogenesis, light is a prerequisite for the development of functional photosynthetic structures. In addition to photosynthesis, a number of other metabolic processes such as nitrogen assimilation, the biosynthesis of fatty acids, amino acids, vitamins, and hormones are localized to plant chloroplasts. The biosynthetic pathways in chloroplasts are tightly regulated, and especially the reduction/oxidation (redox) signals play important roles in controlling many developmental and metabolic processes in chloroplasts. Thioredoxins are universal regulatory proteins that mediate redox signals in chloroplasts. They are able to modify the structure and function of their target proteins by reduction of disulfide bonds. Oxidized thioredoxins are restored via the action of thioredoxin reductases. Two thioredoxin reductase systems exist in plant chloroplasts, the NADPHdependent thioredoxin reductase C (NTRC) and ferredoxin-thioredoxin reductase (FTR). The ferredoxin-thioredoxin system that is linked to photosynthetic light reactions is involved in light-activation of chloroplast proteins. NADPH can be produced via both the photosynthetic electron transfer reactions in light, and in darkness via the pentose phosphate pathway. These different pathways of NADPH production enable the regulation of diverse metabolic pathways in chloroplasts by the NADPH-dependent thioredoxin system. In this thesis, the role of NADPH-dependent thioredoxin system in the redox-control of chloroplast development and metabolism was studied by characterization of Arabidopsis thaliana T-DNA insertion lines of NTRC gene (ntrc) and by identification of chloroplast proteins regulated by NTRC. The ntrc plants showed the strongest visible phenotypes when grown under short 8-h photoperiod. This indicates that i) chloroplast NADPH-dependent thioredoxin system is non-redundant to ferredoxinthioredoxin system and that ii) NTRC particularly controls the chloroplast processes that are easily imbalanced in daily light/dark rhythms with short day and long night. I identified four processes and the redox-regulated proteins therein that are potentially regulated by NTRC; i) chloroplast development, ii) starch biosynthesis, iii) aromatic amino acid biosynthesis and iv) detoxification of H2O2. Such regulation can be achieved directly by modulating the redox state of intramolecular or intermolecular disulfide bridges of enzymes, or by protecting enzymes from oxidation in conjunction with 2-cysteine peroxiredoxins. This thesis work also demonstrated that the enzymatic antioxidant systems in chloroplasts, ascorbate peroxidases, superoxide dismutase and NTRC-dependent 2-cysteine peroxiredoxins are tightly linked up to prevent the detrimental accumulation of reactive oxygen species in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer is the most frequent solid tumor among women and the leading cause of cancer related death in women worldwide. The prognosis of breast cancer patients is tightly correlated with the degree of spread beyond the primary tumor. In this thesis, the aim was to identify novel regulators of tumor progression in breast cancer as well as to get insights into the molecular mechanisms of breast cancer progression and metastasis. First, the role of phospholipid remodeling genes and enzymes important for breast cancer progression was studied in breast cancer samples as well as in cultured breast cancer cells. Tumor samples displayed increased de novo synthesized fatty acids especially in aggressive breast cancer. Furthermore, RNAi mediated cell based assays implicated several target genes critical for breast cancer cell proliferation and survival. Second, the role of arachidonic acid pathway members 15-hydroxyprostaglandin dehydrogenase (HPGD) and phospholipase A2 group VII (PLA2G7) in tumorigenesis associated processes was explored in metastatic breast cancer cells. Both targets were found to contribute to epithelial-mesenchymal transition related processes. Third, a high-throughput RNAi lysate microarray screen was utilized to identify novel vimentin expression regulating genes. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) was found to promote cellular features connected with metastatic disease, thus implicating MTHFD2 as a potential drug target to block breast cancer cell migration and invasion. Taken together, this study identified several putative targets for breast cancer therapy. In addition, these results provide novel information about the mechanisms and factors underlying breast cancer progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alnumycin A is an aromatic pyranonaphthoquinone (PNQ) polyketide closely related to the model compound actinorhodin. While some PNQ polyketides are glycosylated, alnumycin A contains a unique sugar-like dioxane moiety. This unusual structural feature made alnumycin A an interesting research target, since no information was available about its biosynthesis. Thus, the main objective of the thesis work became to identify the steps and the enzymes responsible for the biosynthesis of the dioxane moiety. Cloning, sequencing and heterologous expression of the complete alnumycin gene cluster from Streptomyces sp. CM020 enabled the inactivation of several alnumycin biosynthetic genes and preliminary identification of the gene products responsible for pyran ring formation, quinone formation and dioxane biosynthesis. The individual deletions of the genes resulted in the production of several novel metabolites, which in many cases turned out to be pathway intermediates and could be used for stepwise enzymatic reconstruction of the complete dioxane biosynthetic pathway in vitro. Furthermore, the in vitro reactions with purified alnumycin biosynthetic enzymes resulted in the production of other novel compounds, both pathway intermediates and side products. Identification and molecular level studies of the enzymes AlnA and AlnB catalyzing the first step of dioxane biosynthesis – an unusual C-ribosylation step – led to a mechanistic proposal for the C-ribosylation of the polyketide aglycone. The next step on the dioxane biosynthetic pathway was found to be the oxidative conversion of the attached ribose into a highly unusual dioxolane unit by Aln6 belonging to an uncharacterized protein family, which unexpectedly occurred without any apparent cofactors. Finally, the last step of the pathway was found to be catalyzed by the NADPH-dependent reductase Aln4, which is able to catalyze the conversion of the formed dioxolane into a dioxane moiety. The work presented here and the knowledge gained of the enzymes involved in dioxane biosynthesis enables their use in the rational design of novel compounds containing C–C bound ribose, dioxolane and dioxane moieties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To investigate the association between polymorphisms in genes that encode enzymes involved in folate- and vitamin B12-dependent homocysteine metabolism and recurrent spontaneous abortion (RSA).METHODS: We investigated the C677T and A1298C polymorphisms of the methylenetetrahydrofalate reductase gene (MTHFR), the A2756G polymorphism of the methionine synthase gene (MS) and the 844ins68 insertion of the cystathionine beta synthetase gene (CBS). The PCR technique followed by RFLP was used to assess the polymorphisms; the serum levels of homocysteine, vitamin B12 and folate were investigated by chemiluminescence. The EPI Info Software version 6.04 was used for statistical analysis. Parametric variables were compared by Student's t-test and nonparametric variables by the Wilcoxon rank sum test.RESULTS: The frequencies of gene polymorphisms in 89 women with a history of idiopathic recurrent miscarriage and 150 controls were 19.1 and 19.6% for the C677T, insertion, 20.8 and 26% for the A1298C insertion, 14.2 and 21.9% for the A2756G insertion, and 16.4 and 18% for the 844ins68 insertion, respectively. There were no significant differences between case and control groups in any of the gene polymorphisms investigated. However, the frequency of the 844ins68 insertion in the CBS gene was higher among women with a history of loss during the third trimester of pregnancy (p=0.003). Serum homocysteine, vitamin B12 and folate levels id not differ between the polymorphisms studied in the case and control groups. However, linear regression analysis showed a dependence of serum folate levels on the maintenance of tHcy levels.CONCLUSION: The investigated gene polymorphisms and serum homocysteine, vitamin B12 and folate levels were not associated with idiopathic recurrent miscarriage in the present study. Further investigations are needed in order to confirm the role of the CBS 844ins68 insertion in recurrent miscarriage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exacerbation of the oxidative stress and of the polyol pathway which impair damage myenteric plexus are metabolic characteristics of diabetes. The ascorbic acid (AA) is an antioxidant and an aldose reductase inhibitor, which may act as neuroprotector. The effects of AA supplementation on the density and cellular body profile area (CP) of myenteric neurons in STZ-induced diabetes in rats were assessed. Four groups with five animals each were formed: normoglycemic (C); diabetic (D); AA-treated diabetic (DS) and AA-treated normoglycemic (CS). Dosagen of 50mg of AA were given, three times a week, for each animal (group DS and CS). Ninety days later and after euthanasia, the ileum was collected and processed for the NADPH-diaphorase technique. There were no differences (P>0.05) in the neuronal density among the groups. The CP area was lower (P<0.05) in the DS and CS groups, with a higher incidence of neurons with a CP area exceeding 200µm² for groups C and D. The AA had no influence on the neuronal density in the ileum but had a neuroprotective effect, preventing the increase in the CP area and allowing a higher number of neurons with a CP area with less than 200µm².

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aims at standardizing the pre-incubation and incubation pH and temperature used in the metachromatic staining method of myofibrillar ATPase activity of myosin (mATPase) used for asses and mules. Twenty four donkeys and 10 mules, seven females and three males, were used in the study. From each animal, fragments from the Gluteus medius muscle were collected and percutaneous muscle biopsy was performed using a 6.0-mm Bergström-type needle. In addition to the metachromatic staining method of mATPase, the technique of nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR) was also performed to confirm the histochemical data. The histochemical result of mATPase for acidic pre-incubation (pH=4.50) and alkaline incubation (pH=10.50), at a temperature of 37ºC, yielded the best differentiation of fibers stained with toluidine blue. Muscle fibers were identified according to the following colors: type I (oxidative, light blue), type IIA (oxidative-glycolytic, intermediate blue) and type IIX (glycolytic, dark blue). There are no reports in the literature regarding the characterization and distribution of different types of muscle fibers used by donkeys and mules when performing traction work, cargo transportation, endurance sports (horseback riding) and marching competitions. Therefore, this study is the first report on the standardization of the mATPase technique for donkeys and mules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A análise da atividade enzimática da redutase do nitrato baseou-se no método do ensaio in vivo, que foi padronizado para os tecidos foliares e radiculares do abacaxizeiro cultivado in vitro. As maiores atividades enzimáticas foram obtidas quando se empregou como meio de reação uma solução tampão fosfato 0,1 M, contendo KNO3 100 mM e 3% de n-propanol, a faixa de pH ótimo foi de 6,5 a 7,5. O tempo de incubação foi de 60 min a 30 °C. Essa padronização mostrou-se muito importante para a análise do ritmo diurno da redutase do nitrato em abacaxizeiro, visto que as condições de ensaio in vivo dessa enzima variam muito entre diferentes espécies vegetais. As folhas apresentaram as maiores atividades na presença de luz. As raízes mostraram atividade da redutase do nitrato também na ausência de luminosidade em níveis semelhantes aos observados na presença de luz. A atividade observada nas raízes foi sempre superior à das folhas, sugerindo que as raízes têm um importante papel na redução do nitrato nas condições de cultivo in vitro. O acúmulo de nitrato observado durante o ciclo diurno, nas folhas, evidenciou que a presença desse íon ocorreu em maiores níveis durante o período luminoso, estabelecendo uma correlação positiva com a atividade da redutase do nitrato. Entretanto, nas raízes, as maiores concentrações foram observadas na ausência de luz. Nesse caso, discute-se a possibilidade de outros fatores, além do nitrato, estarem contribuindo positivamente, induzindo uma elevada atividade enzimática na presença de luz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O uso de fertilizantes, além dos riscos de contaminação ambiental, onera o agricultor, chegando a representar 40% dos custos de produção na cultura do milho. O presente estudo visa identificar características fisiológicas relacionadas com o aumento da eficiência do uso do nitrogênio e assim subsidiar programas de melhoramento genético direcionados para obtenção de genótipos de milho produtivos em solos com baixa disponibilidade de nitrogênio. Foram estudadas as variedades de milho Pedra Dourada, Catetão, Carioca (variedades locais, não melhoradas), BR 106, BR 105 (variedades melhoradas em solos férteis), Nitroflint e Nitrodente (variedades melhoradas em solos pobres em N). Plântulas de milho receberam solução nutritiva de Hoagland modificada quanto às fontes de N, sendo utilizadas duas doses de N (1 mM e 15 mM), 75% na forma nítrica e 25% na forma amoniacal. O experimento, composto por um fatorial 2 × 7 (duas doses de N e sete variedades) foi conduzido em casa de vegetação em blocos completos casualizados com três repetições. A deficiência de N afetou de modo muito mais intenso o crescimento das partes aéreas em todos os genótipos. As características bioquímicas estudadas (atividades da nitrato redutase, glutamina sintetase e conteúdo de pigmentos fotossintéticos) foram sensíveis à disponibilidade de N mas não permitiram discriminar diferenças genotípicas. A massa seca das plantas deficientes em N apresentou elevada correlação positiva (0,86) com a massa seca acumulada nas raízes dos diferentes genótipos. Tais resultados sugerem a importância do estudo das características morfológicas e fisiológicas do sistema radicular na seleção de genótipos eficientes quanto ao uso do nitrogênio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 µM Fe3+) on the normal human red blood cell (RBC) antioxidant system was evaluated in vitro by measuring total (GSH) and oxidized (GSSG) glutathione levels, and superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and reductase (GSH-Rd) activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS). The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37oC, for 60 min. For each assay, the results for the control group were: a) GSH = 3.52 ± 0.27 µM/g Hb; b) GSSG = 0.17 ± 0.03 µM/g Hb; c) GSH-Px = 19.60 ± 1.96 IU/g Hb; d) GSH-Rd = 3.13 ± 0.17 IU/g Hb; e) catalase = 394.9 ± 22.8 IU/g Hb; f) SOD = 5981 ± 375 IU/g Hb. The addition of 1 to 100 µM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 µM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The availability of the genome sequence of the bacterial plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, is accelerating important investigations concerning its pathogenicity. Plant vessel occlusion is critical for symptom development. The objective of the present study was to search for information that would help to explain the adhesion of X. fastidiosa cells to the xylem. Scanning electron microscopy revealed that adhesion may occur without the fastidium gum, an exopolysaccharide produced by X. fastidiosa, and X-ray microanalysis demonstrated the presence of elemental sulfur both in cells grown in vitro and in cells found inside plant vessels, indicating that the sulfur signal is generated by the pathogen surface. Calcium and magnesium peaks were detected in association with sulfur in occluded vessels. We propose an explanation for the adhesion and aggregation process. Thiol groups, maintained by the enzyme peptide methionine sulfoxide reductase, could be active on the surface of the bacteria and appear to promote cell-cell aggregation by forming disulfide bonds with thiol groups on the surface of adjacent cells. The enzyme methionine sulfoxide reductase has been shown to be an auxiliary component in the adhesiveness of some human pathogens. The negative charge conferred by the ionized thiol group could of itself constitute a mechanism of adhesion by allowing the formation of divalent cation bridges between the negatively charged bacteria and predominantly negatively charged xylem walls.