885 resultados para Memory-based
Resumo:
The integrability of the nonlinear Schräodinger equation (NLSE) by the inverse scattering transform shown in a seminal work [1] gave an interesting opportunity to treat the corresponding nonlinear channel similar to a linear one by using the nonlinear Fourier transform. Integrability of the NLSE is in the background of the old idea of eigenvalue communications [2] that was resurrected in recent works [3{7]. In [6, 7] the new method for the coherent optical transmission employing the continuous nonlinear spectral data | nonlinear inverse synthesis was introduced. It assumes the modulation and detection of data using directly the continuous part of nonlinear spectrum associated with an integrable transmission channel (the NLSE in the case considered). Although such a transmission method is inherently free from nonlinear impairments, the noisy signal corruptions, arising due to the ampli¯er spontaneous emission, inevitably degrade the optical system performance. We study properties of the noise-corrupted channel model in the nonlinear spectral domain attributed to NLSE. We derive the general stochastic equations governing the signal evolution inside the nonlinear spectral domain and elucidate the properties of the emerging nonlinear spectral noise using well-established methods of perturbation theory based on inverse scattering transform [8]. It is shown that in the presence of small noise the communication channel in the nonlinear domain is the additive Gaussian channel with memory and signal-dependent correlation matrix. We demonstrate that the effective spectral noise acquires colouring", its autocorrelation function becomes slow decaying and non-diagonal as a function of \frequencies", and the noise loses its circular symmetry, becoming elliptically polarized. Then we derive a low bound for the spectral effiency for such a channel. Our main result is that by using the nonlinear spectral techniques one can significantly increase the achievable spectral effiency compared to the currently available methods [9]. REFERENCES 1. Zakharov, V. E. and A. B. Shabat, Sov. Phys. JETP, Vol. 34, 62{69, 1972. 2. Hasegawa, A. and T. Nyu, J. Lightwave Technol., Vol. 11, 395{399, 1993. 3. Yousefi, M. I. and F. R. Kschischang, IEEE Trans. Inf. Theory, Vol. 60, 4312{4328, 2014. 4. Yousefi, M. I. and F. R. Kschischang, IEEE Trans. Inf. Theory, Vol. 60, 4329{4345 2014. 5. Yousefi, M. I. and F. R. Kschischang, IEEE Trans. Inf. Theory, Vol. 60, 4346{4369, 2014. 6. Prilepsky, J. E., S. A. Derevyanko, K. J. Blow, I. Gabitov, and S. K. Turitsyn, Phys. Rev. Lett., Vol. 113, 013901, 2014. 7. Le, S. T., J. E. Prilepsky, and S. K. Turitsyn, Opt. Express, Vol. 22, 26720{26741, 2014. 8. Kaup, D. J. and A. C. Newell, Proc. R. Soc. Lond. A, Vol. 361, 413{446, 1978. 9. Essiambre, R.-J., G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, J. Lightwave Technol., Vol. 28, 662{701, 2010.
Resumo:
Shape memory alloys are a special class of metals that can undergo large deformation yet still be able to recover their original shape through the mechanism of phase transformations. However, when they experience plastic slip, their ability to recover their original shape is reduced. This is due to the presence of dislocations generated by plastic flow that interfere with shape recovery through the shape memory effect and the superelastic effect. A one-dimensional model that captures the coupling between shape memory effect, the superelastic effect and plastic deformation is introduced. The shape memory alloy is assumed to have only 3 phases: austenite, positive variant martensite and negative variant martensite. If the SMA flows plastically, each phase will exhibit a dislocation field that permanently prevents a portion of it from being transformed back to other phases. Hence, less of the phase is available for subsequent phase transformations. A constitutive model was developed to depict this phenomena and simulate the effect of plasticity on both the shape memory effect and the superelastic effect in shape memory alloys. In addition, experimental tests were conducted to characterize the phenomenon in shape memory wire and superelastic wire. ^ The constitutive model was then implemented in within a finite element context as UMAT (User MATerial Subroutine) for the commercial finite element package ABAQUS. The model is phenomenological in nature and is based on the construction of stress-temperature phase diagram. ^ The model has been shown to be capable of capturing the qualitative and quantitative aspects of the coupling between plasticity and the shape memory effect and plasticity and the super elastic effect within acceptable limits. As a verification case a simple truss structure was built and tested and then simulated using the FEA constitutive model. The results where found to be close the experimental data. ^
Resumo:
Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.
Resumo:
Structural vibration control is of great importance. Current active and passive vibration control strategies usually employ individual elements to fulfill this task, such as viscoelastic patches for providing damping, transducers for picking up signals and actuators for inputting actuating forces. The goal of this dissertation work is to design, manufacture, investigate and apply a new type of multifunctional composite material for structural vibration control. This new composite, which is based on multi-walled carbon nanotube (MWCNT) film, is potentially to function as free layer damping treatment and strain sensor simultaneously. That is, the new material integrates the transducer and the damping patch into one element. The multifunctional composite was prepared by sandwiching the MWCNT film between two adhesive layers. Static sensing test indicated that the MWCNT film sensor resistance changes almost linearly with the applied load. Sensor sensitivity factors were comparable to those of the foil strain gauges. Dynamic test indicated that the MWCNT film sensor can outperform the foil strain gage in high frequency ranges. Temperature test indicated the MWCNT sensor had good temperature stability over the range of 237 K-363 K. The Young’s modulus and shear modulus of the MWCNT film composite were acquired by nanoindentation test and direct shear test, respectively. A free vibration damping test indicated that the MWCNT composite sensor can also provide good damping without adding excessive weight to the base structure. A new model for sandwich structural vibration control was then proposed. In this new configuration, a cantilever beam covered with MWCNT composite on top and one layer of shape memory alloy (SMA) on the bottom was used to illustrate this concept. The MWCNT composite simultaneously serves as free layer damping and strain sensor, and the SMA acts as actuator. Simple on-off controller was designed for controlling the temperature of the SMA so as to control the SMA recovery stress as input and the system stiffness. Both free and forced vibrations were analyzed. Simulation work showed that this new configuration for sandwich structural vibration control was successful especially for low frequency system.
Resumo:
Electrical energy is an essential resource for the modern world. Unfortunately, its price has almost doubled in the last decade. Furthermore, energy production is also currently one of the primary sources of pollution. These concerns are becoming more important in data-centers. As more computational power is required to serve hundreds of millions of users, bigger data-centers are becoming necessary. This results in higher electrical energy consumption. Of all the energy used in data-centers, including power distribution units, lights, and cooling, computer hardware consumes as much as 80%. Consequently, there is opportunity to make data-centers more energy efficient by designing systems with lower energy footprint. Consuming less energy is critical not only in data-centers. It is also important in mobile devices where battery-based energy is a scarce resource. Reducing the energy consumption of these devices will allow them to last longer and re-charge less frequently. Saving energy in computer systems is a challenging problem. Improving a system's energy efficiency usually comes at the cost of compromises in other areas such as performance or reliability. In the case of secondary storage, for example, spinning-down the disks to save energy can incur high latencies if they are accessed while in this state. The challenge is to be able to increase the energy efficiency while keeping the system as reliable and responsive as before. This thesis tackles the problem of improving energy efficiency in existing systems while reducing the impact on performance. First, we propose a new technique to achieve fine grained energy proportionality in multi-disk systems; Second, we design and implement an energy-efficient cache system using flash memory that increases disk idleness to save energy; Finally, we identify and explore solutions for the page fetch-before-update problem in caching systems that can: (a) control better I/O traffic to secondary storage and (b) provide critical performance improvement for energy efficient systems.
Resumo:
The move from Standard Definition (SD) to High Definition (HD) represents a six times increases in data, which needs to be processed. With expanding resolutions and evolving compression, there is a need for high performance with flexible architectures to allow for quick upgrade ability. The technology advances in image display resolutions, advanced compression techniques, and video intelligence. Software implementation of these systems can attain accuracy with tradeoffs among processing performance (to achieve specified frame rates, working on large image data sets), power and cost constraints. There is a need for new architectures to be in pace with the fast innovations in video and imaging. It contains dedicated hardware implementation of the pixel and frame rate processes on Field Programmable Gate Array (FPGA) to achieve the real-time performance. ^ The following outlines the contributions of the dissertation. (1) We develop a target detection system by applying a novel running average mean threshold (RAMT) approach to globalize the threshold required for background subtraction. This approach adapts the threshold automatically to different environments (indoor and outdoor) and different targets (humans and vehicles). For low power consumption and better performance, we design the complete system on FPGA. (2) We introduce a safe distance factor and develop an algorithm for occlusion occurrence detection during target tracking. A novel mean-threshold is calculated by motion-position analysis. (3) A new strategy for gesture recognition is developed using Combinational Neural Networks (CNN) based on a tree structure. Analysis of the method is done on American Sign Language (ASL) gestures. We introduce novel point of interests approach to reduce the feature vector size and gradient threshold approach for accurate classification. (4) We design a gesture recognition system using a hardware/ software co-simulation neural network for high speed and low memory storage requirements provided by the FPGA. We develop an innovative maximum distant algorithm which uses only 0.39% of the image as the feature vector to train and test the system design. Database set gestures involved in different applications may vary. Therefore, it is highly essential to keep the feature vector as low as possible while maintaining the same accuracy and performance^
Resumo:
Hardware/software (HW/SW) cosimulation integrates software simulation and hardware simulation simultaneously. Usually, HW/SW co-simulation platform is used to ease debugging and verification for very large-scale integration (VLSI) design. To accelerate the computation of the gesture recognition technique, an HW/SW implementation using field programmable gate array (FPGA) technology is presented in this paper. The major contributions of this work are: (1) a novel design of memory controller in the Verilog Hardware Description Language (Verilog HDL) to reduce memory consumption and load on the processor. (2) The testing part of the neural network algorithm is being hardwired to improve the speed and performance. The American Sign Language gesture recognition is chosen to verify the performance of the approach. Several experiments were carried out on four databases of the gestures (alphabet signs A to Z). (3) The major benefit of this design is that it takes only few milliseconds to recognize the hand gesture which makes it computationally more efficient.
Resumo:
Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.
Resumo:
Attention-deficit hyperactivity disorder (ADHD) is the most prevalent and impairing neurodevelopmental disorder, with worldwide estimates of 5.29%. ADHD is clinically characterized by hyperactivity-impulsivity and inattention, with neuropsychological deficits in executive functions, attention, working memory and inhibition. These cognitive processes rely on prefrontal cortex function; cognitive training programs enhance performance of ADHD participants supporting the idea of neuronal plasticity. Here we propose the development of an on-line puzzle game based assessment and training tool in which participants must deduce the ‘winning symbol’ out of N distracters. To increase ecological validity of assessments strategically triggered Twitter/Facebook notifications will challenge the ability to ignore distracters. In the UK, significant cost for the disorder on health, social and education services, stand at £23m a year. Thus the potential impact of neuropsychological assessment and training to improve our understanding of the pathophysiology of ADHD, and hence our treatment interventions and patient outcomes, cannot be overstated.
Resumo:
Practice-oriented film education aimed at children has been hailed for various reasons: at a personal level, as a means of providing tools for self-expression, for developing creativity and communication skills. And at a social level, it is argued that children must now become competent producers, in addition to critical consumers, of audiovisual content so they can take part in the global public sphere that is arguably emerging. This chapter discusses how the challenges posed by introducing children to filmmaking (i.e. digital video) are being met at three civil associations in Mexico: La Matatena AC, which seeks to enrich the children’s lives by means of the aesthetic experience filmmaking can bring them. Comunicaciòn Comunitaria, concerned with the impact filmmaking can have on the community, preserving cultural memory and enabling participation. And Juguemos a Grabar, with a focus on urban regeneration through the cultural industries.
Resumo:
Encryption and integrity trees guard against phys- ical attacks, but harm performance. Prior academic work has speculated around the latency of integrity verification, but has done so in an insecure manner. No industrial implementations of secure processors have included speculation. This work presents PoisonIvy, a mechanism which speculatively uses data before its integrity has been verified while preserving security and closing address-based side-channels. PoisonIvy reduces per- formance overheads from 40% to 20% for memory intensive workloads and down to 1.8%, on average.
Resumo:
Two novel studies examining the capacity and characteristics of working memory for object weights, experienced through lifting, were completed. Both studies employed visually identical objects of varying weight and focused on memories linking object locations and weights. Whereas numerous studies have examined the capacity of visual working memory, the capacity of sensorimotor memory involved in motor control and object manipulation has not yet been explored. In addition to assessing working memory for object weights using an explicit perceptual test, we also assessed memory for weight using an implicit measure based on motor performance. The vertical lifting or LF and the horizontal GF applied during lifts, measured from force sensors embedded in the object handles, were used to assess participants’ ability to predict object weights. In Experiment 1, participants were presented with sets of 3, 4, 5, 7 or 9 objects. They lifted each object in the set and then repeated this procedure 10 times with the objects lifted either in a fixed or random order. Sensorimotor memory was examined by assessing, as a function of object set size, how lifting forces changed across successive lifts of a given object. The results indicated that force scaling for weight improved across the repetitions of lifts, and was better for smaller set sizes when compared to the larger set sizes, with the latter effect being clearest when objects were lifting in a random order. However, in general the observed force scaling was poorly scaled. In Experiment 2, working memory was examined in two ways: by determining participants’ ability to detect a change in the weight of one of 3 to 6 objects lifted twice, and by simultaneously measuring the fingertip forces applied when lifting the objects. The results showed that, even when presented with 6 objects, participants were extremely accurate in explicitly detecting which object changed weight. In addition, force scaling for object weight, which was generally quite weak, was similar across set sizes. Thus, a capacity limit less than 6 was not found for either the explicit or implicit measures collected.
Resumo:
Two experiments investigated the consequences of action at encoding and recall on the ability to follow sequences of instructions. Children aged 7–9 years recalled sequences of spoken action commands under presentation and recall conditions that either did or did not involve their physical performance. In both experiments, recall was enhanced by carrying out the instructions as they were being initially presented and also by performing them at recall. In contrast, the accuracy of instruction-following did not improve above spoken presentation alone, either when the instructions were silently read or heard by the child (Experiment 1), or when the child repeated the spoken instructions as they were presented (Experiment 2). These findings suggest that the enactment advantage at presentation does not simply reflect a general benefit of a dual exposure to instructions, and that it is not a result of their self-production at presentation. The benefits of action-based recall were reduced following enactment during presentation, suggesting that the positive effects of action at encoding and recall may have a common origin. It is proposed that the benefits of physical movement arise from the existence of a short-term motor store that maintains the temporal, spatial, and motoric features of either planned or already executed actions.
Resumo:
The astonishing development of diverse and different hardware platforms is twofold: on one side, the challenge for the exascale performance for big data processing and management; on the other side, the mobile and embedded devices for data collection and human machine interaction. This drove to a highly hierarchical evolution of programming models. GVirtuS is the general virtualization system developed in 2009 and firstly introduced in 2010 enabling a completely transparent layer among GPUs and VMs. This paper shows the latest achievements and developments of GVirtuS, now supporting CUDA 6.5, memory management and scheduling. Thanks to the new and improved remoting capabilities, GVirtus now enables GPU sharing among physical and virtual machines based on x86 and ARM CPUs on local workstations,computing clusters and distributed cloud appliances.
Resumo:
Background: Many school-based interventions are being delivered in the absence of evidence of effectiveness (Snowling & Hulme, 2011, Br. J. Educ. Psychol., 81, 1).Aim: This study sought to address this oversight by evaluating the effectiveness of the commonly used the Lexia Reading Core5 intervention, with 4- to 6-year-old pupils in Northern Ireland.Sample: A total of 126 primary school pupils in year 1 and year 2 were screened on the Phonological Assessment Battery 2nd Edition (PhAB-2). Children were recruited from the equivalent year groups to Reception and Year 1 in England and Wales, and Pre-kindergarten and Kindergarten in North America.
Methods: A total of 98 below-average pupils were randomized (T0) to either an 8-week block (inline image = 647.51 min, SD = 158.21) of daily access to Lexia Reading Core5 (n = 49) or a waiting-list control group (n = 49). Assessment of phonological skills was completed at post-intervention (T1) and at 2-month follow-up (T2) for the intervention group only.
Results: Analysis of covariance which controlled for baseline scores found that the Lexia Reading Core5 intervention group made significantly greater gains in blending, F(1, 95) = 6.50, p = .012, partial η2 = .064 (small effect size) and non-word reading, F(1, 95) = 7.20, p = .009, partial η2 = .070 (small effect size). Analysis of the 2-month follow-up of the intervention group found that all group treatment gains were maintained. However, improvements were not uniform among the intervention group with 35% failing to make progress despite access to support. Post-hoc analysis revealed that higher T0 phonological working memory scores predicted improvements made in phonological skills.
Conclusions: An early-intervention, computer-based literacy program can be effective in boosting the phonological skills of 4- to 6-year-olds, particularly if these literacy difficulties are not linked to phonological working memory deficits.