1000 resultados para Medical Subject Headings::Anatomy::Cells::Cellular Structures::Cell Membrane
Resumo:
The innate and adaptive immune responses of dendritic cells (DCs) to enteroinvasive Escherichia coli (EIEC) infection were compared with DC responses to Shigella flexneri infection. EIEC triggered DCs to produce interleukin (IL)-10, IL-12 and tumour necrosis factor (TNF)-alpha, whereas S. flexneri induced only the production of TNF-alpha. Unlike S. flexneri, EIEC strongly increased the expression of toll like receptor (TLR)-4 and TLR-5 in DCs and diminished the expression of co-stimulatory molecules that may cooperate to inhibit CD4(+) T-lymphocyte proliferation. The inflammation elicited by EIEC seems to be related to innate immunity both because of the aforementioned results and because only EIEC were able to stimulate DC transmigration across polarised Caco-2 cell monolayers, a mechanism likely to be associated with the secretion of CC chemokine ligands (CCL) 20 and TNF-alpha. Understanding intestinal DC biology is critical to unravelling the infection strategies of EIEC and may aid in the design of treatments for infectious diseases.
Resumo:
Among the many cell types that may prove useful to regenerative medicine, mounting evidence suggests that human term placenta-derived cells will join the list of significant contributors. In making new cell therapy-based strategies a clinical reality, it is fundamental that no a priori claims are made regarding which cell source is preferable for a particular therapeutic application. Rather, ongoing comparisons of the potentiality and characteristics of cells from different sources should be made to promote constant improvement in cell therapies, and such comparisons will likely show that individually tailored cells can address disease-specific clinical needs. The principle underlying such an approach is resistance to the notion that comprehensive characterization of any cell type has been achieved, neither in terms of phenotype nor risks-to-benefits ratio. Tailoring cell therapy approaches to specific conditions also requires an understanding of basic disease mechanisms and close collaboration between translational researchers and clinicians, to identify current needs and shortcomings in existing treatments. To this end, the international workshop entitled "Placenta-derived stem cells for treatment of inflammatory diseases: moving toward clinical application" was held in Brescia, Italy, in March 2009, and aimed to harness an understanding of basic inflammatory mechanisms inherent in human diseases with updated findings regarding biological and therapeutic properties of human placenta-derived cells, with particular emphasis on their potential for treating inflammatory diseases. Finally, steps required to allow their future clinical application according to regulatory aspects including good manufacturing practice (GMP) were also considered. In September 2009, the International Placenta Stem Cell Society (IPLASS) was founded to help strengthen the research network in this field.
Resumo:
We have previously shown that EphB4 and ephrin-B2 are differentially expressed in the mammary gland and that their deregulated expression in the mammary epithelium of transgenic mice leads to perturbations of the mammary parenchyma and vasculature. In addition, overexpression of EphB4 and expression of a truncated ephrin-B2 mutant, capable of receptor stimulation but incapable of reverse signalling, confers a metastasising phenotype on NeuT initiated mouse mammary tumours. We have taken advantage of this transgenic tumour model to compare stem cell characteristics between the non-metastasising and metastasising mammary tumours. We analysed the expression of the proliferation attenuating p21(waf) gene, which was significantly increased in the metastasising tumours. Moreover, we compared the expression of CK-19, Sca-1, CD24 and CD49f as markers for progenitor cells exhibiting a decreasing differentiation grade. Sca-1 expressing cells were the earliest progenitors detected in the non-metastasising NeuT induced tumours. The metastasising NeuT/EphB4 tumours were enriched in CD24 expressing cells, whereas the metastasising NeuT/truncated ephrin-B2 tumours contained in addition significant amounts of CD49f expressing cells. The same cell populations were also enriched in mammary glands of single transgenic MMTV-EphB4 and MMTV-truncated ephrin-B2 females indicating that deregulated EphB4-ephrin-B2 signalling interferes with the homeostasis of the stem/progenitor cell pool before tumour formation is initiated. Since the same cell populations are enriched in the normal tissue, primary mammary tumours and metastases we conclude that these progenitor cells were the origin of tumour formation and that this change in the tumour origin has led to the acquisition of the metastatic tumour phenotype.
Resumo:
Current methods to characterize mesenchymal stem cells (MSCs) are limited to CD marker expression, plastic adherence and their ability to differentiate into adipogenic, osteogenic and chondrogenic precursors. It seems evident that stem cells undergoing differentiation should differ in many aspects, such as morphology and possibly also behaviour; however, such a correlation has not yet been exploited for fate prediction of MSCs. Primary human MSCs from bone marrow were expanded and pelleted to form high-density cultures and were then randomly divided into four groups to differentiate into adipogenic, osteogenic chondrogenic and myogenic progenitor cells. The cells were expanded as heterogeneous and tracked with time-lapse microscopy to record cell shape, using phase-contrast microscopy. The cells were segmented using a custom-made image-processing pipeline. Seven morphological features were extracted for each of the segmented cells. Statistical analysis was performed on the seven-dimensional feature vectors, using a tree-like classification method. Differentiation of cells was monitored with key marker genes and histology. Cells in differentiation media were expressing the key genes for each of the three pathways after 21 days, i.e. adipogenic, osteogenic and chondrogenic, which was also confirmed by histological staining. Time-lapse microscopy data were obtained and contained new evidence that two cell shape features, eccentricity and filopodia (= 'fingers') are highly informative to classify myogenic differentiation from all others. However, no robust classifiers could be identified for the other cell differentiation paths. The results suggest that non-invasive automated time-lapse microscopy could potentially be used to predict the stem cell fate of hMSCs for clinical application, based on morphology for earlier time-points. The classification is challenged by cell density, proliferation and possible unknown donor-specific factors, which affect the performance of morphology-based approaches. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Nanoscale drug delivery systems, such as sterically stabilized immunoliposomes binding to internalizing tumor-associated antigens, can increase therapeutic efficacy and reduce toxicity to normal tissues compared with nontargeted liposomes. The epithelial cell adhesion molecule (EpCAM) is of interest as a ligand for targeted drug delivery because it is abundantly expressed in solid tumors but shows limited distribution in normal tissues. To generate EpCAM-specific immunoliposomes for targeted cancer therapy, the humanized single-chain Fv antibody fragment 4D5MOCB was covalently linked to the exterior of coated cationic liposomes. As anticancer agent, we encapsulated the previously described antisense oligonucleotide 4625 specific for both bcl-2 and bcl-xL. The EpCAM-targeted immunoliposomes (SIL25) showed specific binding to EpCAM-overexpressing tumor cells, with a 10- to 20-fold increase in binding compared with nontargeted control liposomes. No enhanced binding was observed on EpCAM-negative control cells. On cell binding, SIL25 was efficiently internalized by receptor-mediated endocytosis, ultimately leading to down-regulation of both bcl-2 and bcl-xL expression on both the mRNA and protein level, which resulted in enhanced tumor cell apoptosis. In combination experiments, the use of SIL25 led to a 2- to 5-fold sensitization of EpCAM-positive tumor cells of diverse origin to death induction by doxorubicin. Our data show the promise of EpCAM-specific drug delivery systems, such as antisense-loaded immunoliposomes, for targeted cancer therapy.
Resumo:
Intravital imaging has revealed that T cells change their migratory behavior during physiological activation inside lymphoid tissue. Yet, it remains less well investigated how the intrinsic migratory capacity of activated T cells is regulated by chemokine receptor levels or other regulatory elements. Here, we used an adjuvant-driven inflammation model to examine how motility patterns corresponded with CCR7, CXCR4, and CXCR5 expression levels on ovalbumin-specific DO11.10 CD4(+) T cells in draining lymph nodes. We found that while CCR7 and CXCR4 surface levels remained essentially unaltered during the first 48-72 h after activation of CD4(+) T cells, their in vitro chemokinetic and directed migratory capacity to the respective ligands, CCL19, CCL21, and CXCL12, was substantially reduced during this time window. Activated T cells recovered from this temporary decrease in motility on day 6 post immunization, coinciding with increased migration to the CXCR5 ligand CXCL13. The transiently impaired CD4(+) T cell motility pattern correlated with increased LFA-1 expression and augmented phosphorylation of the microtubule regulator Stathmin on day 3 post immunization, yet neither microtubule destabilization nor integrin blocking could reverse TCR-imprinted unresponsiveness. Furthermore, protein kinase C (PKC) inhibition did not restore chemotactic activity, ruling out PKC-mediated receptor desensitization as mechanism for reduced migration in activated T cells. Thus, we identify a cell-intrinsic, chemokine receptor level-uncoupled decrease in motility in CD4(+) T cells shortly after activation, coinciding with clonal expansion. The transiently reduced ability to react to chemokinetic and chemotactic stimuli may contribute to the sequestering of activated CD4(+) T cells in reactive peripheral lymph nodes, allowing for integration of costimulatory signals required for full activation.
Resumo:
Colonization of new habitats through dispersal of phytoplankton cysts might be limited, if resident populations outcompete invaders during germination. We reciprocally transferred Gonyostomum semen (Raphidophyceae) cysts from three lakes into native and foreign waters originating from the respective habitats. Germination rate and germling growth were impacted by water origin, but there was no preference for native water. Gonyostomum semen's ability to germinate in different conditions might explain its expansion in northern Europe.
Resumo:
The contraction of the actomyosin cytoskeleton, which is produced by the sliding of myosin II along actin filaments, drives important cellular activities such as cytokinesis and cell migration. To explain the contraction velocities observed in such physiological processes, we have studied the contraction of intact cytoskeletons of Dictyostelium discoideum cells after removing the plasma membrane using Triton X-100. The technique developed in this work allows for the quantitative measurement of contraction rates of individual cytoskeletons. The relationship of the contraction rates with forces was analyzed using three different myosins with different in vitro sliding velocities. The cytoskeletons containing these myosins were always contractile and the contraction rate was correlated with the sliding velocity of the myosins. However, the values of the contraction rate were two to three orders of magnitude slower than expected from the in vitro sliding velocities of the myosins, presumably due to internal and external resistive forces. The contraction process also depended on actin cross-linking proteins. The lack of α-actinin increased the contraction rate 2-fold and reduced the capacity of the cytoskeleton to retain internal materials, while the lack of filamin resulted in the ATP-dependent disruption of the cytoskeleton. Interestingly, the myosin-dependent contraction rate of intact contractile rings is also reportedly much slower than the in vitro sliding velocity of myosin, and is similar to the contraction rates of cytoskeletons (different by only 2–3 fold), suggesting that the contraction of intact cells and cytoskeletons is limited by common mechanisms.
Resumo:
The identification and physical isolation of epithelial stem cells is critical to our understanding of their growth regulation during homeostasis, wound healing, and carcinogenesis. These stem cells remain poorly characterized because of the absence of specific molecular markers that permit us to distinguish them from their progeny, the transit amplifying (TA) cells, which have a more restricted proliferative potential. Cell kinetic analyses have permitted the identification of murine keratinocyte stem cells (KSCs) as slowly cycling cells that retain [3H]thymidine ([3H]Tdr) label, termed label-retaining cells (LRCs), whereas TA cells are visualized as rapidly cycling cells after a single pulse of [3H]Tdr, termed pulse-labeled cells (PLCs). Here, we report on the successful separation of KSCs from TA cells through the combined use of in vivo cell kinetic analysis and fluorescence-activated cell sorting. Specifically, we demonstrate that murine dorsal keratinocytes characterized by their high levels of α6 integrin and low to undetectable expression of the transferrin receptor (CD71) termed α6briCD71dim cells, are enriched for epithelial stem cells because they represent a minor (≈8%) and quiescent subpopulation of small blast-like cells, with a high nuclear:cytoplasmic ratio, containing ≈70% of label-retaining cells, the latter being a well documented characteristic of stem cells. Conversely, TA cells could be enriched in a phenotypically distinct subpopulation termed α6briCD71bri, representing the majority (≈60%) of basal keratinocytes that are actively cycling, and importantly contain ≈70% of [3H]Tdr pulse-labeled cells. Importantly, immunostaining of dorsal skin revealed the presence of CD71dim cells in the hair follicle bulge region, a well documented location for KSCs.
Resumo:
Maspin, a novel serine protease inhibitor (serpin), inhibits tumor invasion and metastasis of mammary carcinoma. We show here that recombinant maspin protein blocks the motility of these carcinoma cells in culture over 12 h, as demonstrated by time-lapse video microscopy. Lamellopodia are withdrawn but ruffling continues. Both exogenous recombinant maspin and maspin expressed by tumor transfectants exhibit inhibitory effects on cell motility and cell invasion as shown in modified Boyden chamber assays. In addition, three prostatic cancer cell lines treated with recombinant maspin exhibited similar inhibition of both invasion and motility, suggesting a similar mode of maspin action in these two glandular epithelial cancers. When mammary carcinoma cells were treated with recombinant maspin, the protein was shown by immunostaining to bind specifically to the cell surface, suggesting that maspin activity is membrane associated. When pretreated with antimaspin antibody, maspin loses its inhibitory effects on both invasion and motility. However, when maspin is added to these cells preceding antibody treatment, the activity of maspin is no longer inhibited by subsequent addition of the antibody. It is concluded therefore that the inhibition of invasion and motility by maspin is initially localized to the cell surface.
Resumo:
Vaccination with cytokine-producing tumor cells generates potent immune responses against tumors outside the central nervous system (CNS). The CNS, however, is a barrier to allograft and xenograft rejection, and established tumors within the CNS have failed to respond to other forms of systemic immunotherapy. To determine what barriers the "immunologically privileged" CNS would pose to cytokine-assisted tumor vaccines and what cytokines would be most efficacious against tumors within the CNS, we irradiated B16 murine melanoma cells producing murine interleukin 2 (IL-2), IL-3, IL-4, IL-6, gamma-interferon, or granulocyte-macrophage colony stimulating factor (GM-CSF) and used these cells as subcutaneous vaccines against tumors within the brain. Under conditions where untransfected B16 cells had no effect, cells producing IL-3, IL-6, or GM-CSF increased the survival of mice challenged with viable B16 cells in the brain. Vaccination with B16 cells producing IL-4 or gamma-interferon had no effect, and vaccination with B16 cells producing IL-2 decreased survival time. GM-CSF-producing vaccines were also able to increase survival in mice with pre-established tumors. The response elicited by GM-CSF-producing vaccines was found to be specific to tumor type and to be abrogated by depletion of CD8+ cells. Unlike the immunity generated against subcutaneous tumors by GM-CSF, however, the effector responses generated against tumors in the CNS were not dependent on CD4+ cells. These data suggest that cytokine-producing tumor cells are very potent stimulators of immunity against tumors within the CNS, but effector responses in the CNS may be different from those obtained against subcutaneous tumors.
Resumo:
Cytotoxic lymphocytes are characterized by their inclusion of cytoplasmic granules that fuse with the plasma membrane following target cell recognition. We previously identified a cytotoxic granule membrane protein designated p15-TIA-1 that is immunochemically related to an RNA-recognition motif (RRM)-type RNA-binding protein designated p40-TIA-1. Although it was suggested that p15-TIA-1 might be derived from p40-T1A-1 by proteolysis, N-terminal amino acid sequencing of p15-TIA-1 immunoaffinity purified from a natural killer (NK) cell line by using monoclonal antibody (mAb) 2G9 revealed that p15-T1A-1 is identical to the deduced amino acid sequence of NKG7 and GIG-1, cDNAs isolated from NK cells and granulocyte-colony-stimulating factor-treated mononuclear cells, respectively. Epitope mapping revealed that mAb 2G9 recognizes the C terminus of p15-T1A-1 and p40-T1A-1. The deduced amino acid sequence of p15-T1A-1/NKG7/GIG-1 predicts that the protein possesses four transmembrane domains, and immuno-electron microscopy localizes the endogenous protein to the membranes of cytotoxic granules in NK cells. Given its subcellular localization, we propose to rename-this protein GMP-17, for granule membrane protein of 17 kDa. Immunofluorescence microscopy of freshly isolated NK cells confirms this granular localization. Target cell-induced NK cell degranulation results in translocation of GMP-17 from granules to the plasma membrane, suggesting a possible role for GMP-17 in regulating the effector function of lymphocytes and neutrophils.