992 resultados para Maturity stage
Resumo:
The composition of the time-resolved surface pressure field around a high-pressure rotor blade caused by the presence of neighboring blade rows was studied, with the individual effects of wake, shock and potential field interaction being determined. Two test geometries were considered: first, a high-pressure turbine stage coupled with a swan-necked diffuser exit duct; secondly, the same high-pressure stage but with a vane located in the downstream duct. Both tests were carried out at engine-representative Mach and Reynolds numbers. By comparing the results to time-resolved computational predictions of the flowfield, the accuracy with which the computation predicts blade interaction was determined. It was found that in addition to upstream vane-rotor and rotor-downstream vane interactions, a new interaction mechanism was found resulting from the interaction between the downstream vane's potential field and the upstream vane's trailing edge potential field and shock.
Resumo:
The composition of the time-resolved surface pressure field around a high-pressure rotor blade caused by the presence of neighboring blade rows was studied, with the individual effects of wake, shock and potential field interaction being determined. Two test geometries were considered: first, a high-pressure turbine stage coupled with a swan-necked diffuser exit duct; secondly, the same high-pressure stage but with a vane located in the downstream duct. Both tests were carried out at engine-representative Mach and Reynolds numbers. By comparing the results to time-resolved computational predictions of the flowfield, the accuracy with which the computation predicts blade interaction was determined. Evidence was obtained that for a large downstream vane, the flow conditions in the rotor passage, at any instant in time, are close to being steady state.
Resumo:
This paper describes both the migration and dissipation of flow phenomena downstream of a transonic high-pressure turbine stage. The geometry of the HP stage exit duct considered is a swan-necked diffuser similar to those likely to be used in future engine designs. The paper contains results both from an experimental programme in a turbine test facility and from numerical predictions. Experimental data was acquired using three fast-response aerodynamic probes capable of measuring Mach number, whirl angle, pitch angle, total pressure and static pressure. The probes were used to make time-resolved area traverses at two axial locations downstream of the rotor trailing edge. A 3D time-unsteady viscous Navier-Stokes solver was used for the numerical predictions. The unsteady exit flow from a turbine stage is formed from rotordependent phenomena (such as the rotor wake, the rotor trailing edge recompression shock, the tip-leakage flow and the hub secondary flow) and vane-rotor interaction dependant phenomena. This paper describes the time-resolved behaviour and three-dimensional migration paths of both of these phenomena as they convect downstream. It is shown that the inlet flow to a downstream vane is dominated by two corotating vortices, the first caused by the rotor tip-leakage flow and the second by the rotor hub secondary flow. At the inlet plane of the downstream vane the wake is extremely weak and the radial pressure gradient is shown to have caused the majority of the high loss wake fluid to be located between the mid-height of the passage and the casing wall. The structure of the flow indicates that between a high pressure stage and a downstream vane simple two-dimensional blade row interaction does not occur. The results presented in this paper indicate that the presence of an upstream stage is likely to significantly alter the structure of the secondary flow within a downstream vane. The paper also shows that vane-rotor interaction within the upstream stage causes a 10° circumferential variation in the inlet flow angle of the 2nd stage vane.
Resumo:
A study of the three-dimensional stator-rotor interaction in a turbine stage is presented. Experimental data reveal vortices downstream of the rotor which are stationary in the absolute frame - indicating that they are caused by the stator exit flowfield. Evidence of the rotor hub passage vortices is seen, but additional vortical structures away from the endwalls, which would not be present if the rotor were tested in isolation, are also identified. An unsteady computation of the rotor row is performed using the measured stator exit flowfield as the inlet boundary condition. The strength and location of the vortices at rotor exit are predicted. A formation mechanism is proposed whereby stator wake fluid with steep spanwise gradients of absolute total pressure is responsible for all but one of the rotor exit vortices. This mechanism is then verified computationally using a passive-scalar tracking technique. The predicted loss generation through the rotor row is then presented and a comparison made with a steady calculation where the inlet flow has been mixed out to pitchwise uniformity. The loss produced in the steady simulation, even allowing for the mixing loss at inlet, is 10% less than that produced in the unsteady simulation. This difference highlights the importance of the time-accurate calculation as a tool of the turbomachine designer.
Resumo:
Deciding to invest in early stage technologies is one of the most important tasks of technology management and arguably also the most uncertain. It assumes a particular significance in the rise of technology companies in emerging economies, which have to make appropriate investment decisions. Technology managers already have a wide range of methods and tools at their disposal, but these are mostly focussed on quantitative measures such as discounted cash flow and real options techniques. However, in the early stages of technology development there seems to be a lot of dissatisfaction with these techniques as there appears to be a lack of accuracy with respect to the underlying assumptions that these models require. In order to complement these models this paper will discuss an alternative approach that we call value road-mapping. By adapting roadmapping techniques the potential value streams of early stages technologies can be plotted and hence a clearer consensus based picture of the future potential of new technologies emerges. Roadmapping is a workshop-based process bringing together multifunctional perspectives, and supporting communication in particular between technical and commercial groups. The study is work in progress and is based on a growing number of cases. (c) 2006 PICMET.
Resumo:
This study was aimed to analyze the annual reproductive cycle of the freshwater crab Paratelphusa spinigera (Wood Mason, 1871). P. spinigera breeds only once in a year; hence, it is a monovoltine species. Gonad maturation, changes in abdomen shape, size and female maturity index (FMI) marked the onset of sexual maturity of female P. spinigera. The occurrence of berried females marked the onset of breeding season. The fecundity of P. spinigera ranged from 533 to 1306 in number, with an average of 699.11 ± 217.38. The correlation of fecundity with carapace width and body weight was also found to be positively significant (r = 0. 780 and 0.933, respectively). The eggs were carried on the pleopods and nurtured for approximately 30-35 days, until the eggs hatch, showing perfect maternal care. The FMI values ranging between 0.70 and 0.80 represented immature stage of gonadal development. When the FMI ranged from 0.91 to 1.00, all stages of gonadal development, i.e. developing, maturing and mature stages were observed. The females with fully ripe ovary had FMI values greater than 1.00.
Resumo:
The absolute fecundity of Saurida tumbil ranged between 24160 to 172000 eggs with weight range of 230-670 g. Linear relationship between fecundity and weight was more valid than that of length and ovary weight. The fish breed once a year during November to March. The length at which 50% of the females mature was calculated as 296 mm. The female dominated the commercial catch and overall male to female ratio of population was 1:1.62 throughout the year.
Resumo:
The complete mitochondrial genomes of the primary cancerous, matched paracancerous normal and distant normal tissues from 10 early-stage breast cancer patients were analyzed in this study, with special attempt (i) to investigate whether the reported high
Resumo:
Penaeus merguensis is so far reported to attain complete maturity and spawn in the sea or deep culture ponds only. Mature specimens of stage III to V collected from a shallow reservoir of solar saltworks were studied and spawned in laboratory. A comparison of spawning of spawner from sea and reservoir is also reported.
Resumo:
This study investigated the neuromuscular mechanisms underlying the initial stage of adaptation to novel dynamics. A destabilizing velocity-dependent force field (VF) was introduced for sets of three consecutive trials. Between sets a random number of 4-8 null field trials were interposed, where the VF was inactivated. This prevented subjects from learning the novel dynamics, making it possible to repeatedly recreate the initial adaptive response. We were able to investigate detailed changes in neural control between the first, second and third VF trials. We identified two feedforward control mechanisms, which were initiated on the second VF trial and resulted in a 50% reduction in the hand path error. Responses to disturbances encountered on the first VF trial were feedback in nature, i.e. reflexes and voluntary correction of errors. However, on the second VF trial, muscle activation patterns were modified in anticipation of the effects of the force field. Feedforward cocontraction of all muscles was used to increase the viscoelastic impedance of the arm. While stiffening the arm, subjects also exerted a lateral force to counteract the perturbing effect of the force field. These anticipatory actions indicate that the central nervous system responds rapidly to counteract hitherto unfamiliar disturbances by a combination of increased viscoelastic impedance and formation of a crude internal dynamics model.
Resumo:
The rule of light on the timing of maturation and spawning in tropical and subtropical regions is not clear well, because the reproductive cycle in these systems is lunar synchronized. In this study, thus, the effects of different light regimes were investigated on maturational progress of whitespotted rabbitfish, Siganus sutor, the commercial species in Persian Gulf and Oman Sea. During prespawning season, 50 adult fish were randomly divided into ten 300-l tanks (n=5). The fish in control tank received indoor light condition and the fish in each other tanks were exposed to nine different combinations of photoperiod (8L: 16D, 12L: 12D, 16L: 8D) and light intensity (1000, 2000, 3000 lux). After 60 days, GSI and HSI values, serum levels of estradiol (E2), testosterone (T), 17-α hydroxyprogestrone (OHP), calcium (Ca2+) and gonad histology were evaluated for females and males. In females the GSI mean values of exposed fish increased in comparison with control except for fish were kept under 8L, 2000 lux (tank 8). These differences were significant only for fishes in tank 7 (8L, 3000 lux). In the cases of HSI, the results were converse, so that, the most of thanks showed significant decreasing than fishes reared under indoor condition. Morphology and histology study of Ovaries showed three developmental phases including 3, 4 and chiefly 5 that were parallel with GSI values. Fortheremore the serum levels of E2 was recorded between 0.54-15.8 ng/ml in different fish and their mean values were lower than control in all treatmants (P> 0.05). In males, the similar results were obtained. The GSI and HSI mean values in experimental regimes compared with control were upper and lower, respectively, except for fishes were reared in tank 1 (16L, 3000 lux). Testes histology of fishes were reared under different regimes showed signs of stage 5, since no blood vessels observed and thick milt exuded on slight pressure. The mean values of testosterone consentration in fishes were kept in tanks 1 and 6 (12L, 1000 lux) were higher and in other ones were lower than control group. It is also noted that the OHP and Ca2+ had diverse results including increasing and decreasing mean values than control. So, these factors contrary to E2 and T were not suitable to evaluation of maturity in both sexes. On the basis of ovarian structure in stage 5, oocyte development pattern in this species was group synchronous. So, increased mean of GSI versus decreased values of HSI, E2 and perhaps Ca2+ were the signs of improved maturation. But in males, reduced levels of T and similarity of testes morphology in all samples caused that GSI mean value was the only indicator for differentiating among treatments. These findings suggest that alternations were used in light regimes have been the reason of improved maturity in all treatments except fishes reared in tank 8. The ١٠٧ rule of light intensity on induction of maturity was cleared by comparision between fishes in tanks 4, 5, 6 and control group. Because day length was the same whereas fishes in tanks 4, 5 and 6 were exposed to increased light intensity compared with control. This fact verified by results was obtained from fishes in tanks 9 and especially 7, since photoperiod in this group was lower than control. So, higher intensity was considered as the reason of alternations. Contrasting with indoor condition, Induced maturity was also cleared for fishes were kept in tanks 1, 2 and 3, where both of light duration and intensity were increased. But, the rule of photoperiod was individually demonstrated when obtained results were compared with similar light intensities in other treatments. In conclusion, with comparison among different light regimes it is declared that siganids were kept under light condition of tank 2 including 16h light duration combined with 2000 lux intensity showed the best signs of sexual maturation in both sexes. On the basis of this study, setting up the spring light condition during prespawning season induces maturation in withspotted rabbitfish. This improvement not only by influence of photoperiod or light intensity, separately, but obtained through interaction between them. Thus, determination of threshold and resistance to light be recommended before exposure, although using proper regime during suitable time are necessary to achieve purposes considerably.
Resumo:
We compared early stages of face processing in young and older participants as indexed by ERPs elicited by faces and non-face stimuli presented in upright and inverted orientations. The P1 and N170 components were larger in older than in young participant