716 resultados para Mathematical computing
Resumo:
A mathematical model incorporating many of the important processes at work in the crystallization of emulsions is presented. The model describes nucleation within the discontinuous domain of an emulsion, precipitation in the continuous domain, transport of monomers between the two domains, and formation and subsequent growth of crystals in both domains. The model is formulated as an autonomous system of nonlinear, coupled ordinary differential equations. The description of nucleation and precipitation is based upon the Becker–Döring equations of classical nucleation theory. A particular feature of the model is that the number of particles of all species present is explicitly conserved; this differs from work that employs Arrhenius descriptions of nucleation rate. Since the model includes many physical effects, it is analyzed in stages so that the role of each process may be understood. When precipitation occurs in the continuous domain, the concentration of monomers falls below the equilibrium concentration at the surface of the drops of the discontinuous domain. This leads to a transport of monomers from the drops into the continuous domain that are then incorporated into crystals and nuclei. Since the formation of crystals is irreversible and their subsequent growth inevitable, crystals forming in the continuous domain effectively act as a sink for monomers “sucking” monomers from the drops. In this case, numerical calculations are presented which are consistent with experimental observations. In the case in which critical crystal formation does not occur, the stationary solution is found and a linear stability analysis is performed. Bifurcation diagrams describing the loci of stationary solutions, which may be multiple, are numerically calculated.
Resumo:
Cholesterol is one of the key constituents for maintaining the cellular membrane and thus the integrity of the cell itself. In contrast high levels of cholesterol in the blood are known to be a major risk factor in the development of cardiovascular disease. We formulate a deterministic nonlinear ordinary differential equation model of the sterol regulatory element binding protein 2 (SREBP-2) cholesterol genetic regulatory pathway in an hepatocyte. The mathematical model includes a description of genetic transcription by SREBP-2 which is subsequently translated to mRNA leading to the formation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a main precursor of cholesterol synthesis. Cholesterol synthesis subsequently leads to the regulation of SREBP-2 via a negative feedback formulation. Parameterised with data from the literature, the model is used to understand how SREBP-2 transcription and regulation affects cellular cholesterol concentration. Model stability analysis shows that the only positive steady-state of the system exhibits purely oscillatory, damped oscillatory or monotic behaviour under certain parameter conditions. In light of our findings we postulate how cholesterol homestasis is maintained within the cell and the advantages of our model formulation are discussed with respect to other models of genetic regulation within the literature.
Resumo:
In this paper we propose methods for computing Fresnel integrals based on truncated trapezium rule approximations to integrals on the real line, these trapezium rules modified to take into account poles of the integrand near the real axis. Our starting point is a method for computation of the error function of complex argument due to Matta and Reichel (J Math Phys 34:298–307, 1956) and Hunter and Regan (Math Comp 26:539–541, 1972). We construct approximations which we prove are exponentially convergent as a function of N , the number of quadrature points, obtaining explicit error bounds which show that accuracies of 10−15 uniformly on the real line are achieved with N=12 , this confirmed by computations. The approximations we obtain are attractive, additionally, in that they maintain small relative errors for small and large argument, are analytic on the real axis (echoing the analyticity of the Fresnel integrals), and are straightforward to implement.
Resumo:
n this study, the authors discuss the effective usage of technology to solve the problem of deciding on journey start times for recurrent traffic conditions. The developed algorithm guides the vehicles to travel on more reliable routes that are not easily prone to congestion or travel delays, ensures that the start time is as late as possible to avoid the traveller waiting too long at their destination and attempts to minimise the travel time. Experiments show that in order to be more certain of reaching their destination on time, a traveller has to leave early and correspondingly arrive early, resulting in a large waiting time. The application developed here asks the user to set this certainty factor as per the task in hand, and computes the best start time and route.
Resumo:
Smart meters are becoming more ubiquitous as governments aim to reduce the risks to the energy supply as the world moves toward a low carbon economy. The data they provide could create a wealth of information to better understand customer behaviour. However at the household, and even the low voltage (LV) substation level, energy demand is extremely volatile, irregular and noisy compared to the demand at the high voltage (HV) substation level. Novel analytical methods will be required in order to optimise the use of household level data. In this paper we briefly outline some mathematical techniques which will play a key role in better understanding the customer's behaviour and create solutions for supporting the network at the LV substation level.
Resumo:
Mathematical ability is heritable, but few studies have directly investigated its molecular genetic basis. Here we aimed to identify specific genetic contributions to variation in mathematical ability. We carried out a genome wide association scan using pooled DNA in two groups of U.K. samples, based on end of secondary/high school national academic exam achievement: high (n = 419) versus low (n = 183) mathematical ability while controlling for their verbal ability. Significant differences in allele frequencies between these groups were searched for in 906,600 SNPs using the Affymetrix GeneChip Human Mapping version 6.0 array. After meeting a threshold of p<1.5×10-5, 12 SNPs from the pooled association analysis were individually genotyped in 542 of the participants and analyzed to validate the initial associations (lowest p-value 1.14 ×10-6). In this analysis, one of the SNPs (rs789859) showed significant association after Bonferroni correction, and four (rs10873824, rs4144887, rs12130910 rs2809115) were nominally significant (lowest p-value 3.278 × 10-4). Three of the SNPs of interest are located within, or near to, known genes (FAM43A, SFT2D1, C14orf64). The SNP that showed the strongest association, rs789859, is located in a region on chromosome 3q29 that has been previously linked to learning difficulties and autism. rs789859 lies 1.3 kbp downstream of LSG1, and 700 bp upstream of FAM43A, mapping within the potential promoter/regulatory region of the latter. To our knowledge, this is only the second study to investigate the association of genetic variants with mathematical ability, and it highlights a number of interesting markers for future study.
Resumo:
SOA (Service Oriented Architecture), workflow, the Semantic Web, and Grid computing are key enabling information technologies in the development of increasingly sophisticated e-Science infrastructures and application platforms. While the emergence of Cloud computing as a new computing paradigm has provided new directions and opportunities for e-Science infrastructure development, it also presents some challenges. Scientific research is increasingly finding that it is difficult to handle “big data” using traditional data processing techniques. Such challenges demonstrate the need for a comprehensive analysis on using the above mentioned informatics techniques to develop appropriate e-Science infrastructure and platforms in the context of Cloud computing. This survey paper describes recent research advances in applying informatics techniques to facilitate scientific research particularly from the Cloud computing perspective. Our particular contributions include identifying associated research challenges and opportunities, presenting lessons learned, and describing our future vision for applying Cloud computing to e-Science. We believe our research findings can help indicate the future trend of e-Science, and can inform funding and research directions in how to more appropriately employ computing technologies in scientific research. We point out the open research issues hoping to spark new development and innovation in the e-Science field.
Resumo:
Rhythms are manifested ubiquitously in dynamical biological processes. These fundamental processes which are necessary for the survival of living organisms include metabolism, breathing, heart beat, and, above all, the circadian rhythm coupled to the diurnal cycle. Thus, in mathematical biology, biological processes are often represented as linear or nonlinear oscillators. In the framework of nonlinear and dissipative systems (ie. the flow of energy, substances, or sensory information), they generate stable internal oscillations as a response to environmental input and, in turn, utilise such output as a means of coupling with the environment.
Resumo:
We present an overview of the MELODIES project, which is developing new data-intensive environmental services based on data from Earth Observation satellites, government databases, national and European agencies and more. We focus here on the capabilities and benefits of the project’s “technical platform”, which applies cloud computing and Linked Data technologies to enable the development of these services, providing flexibility and scalability.
Resumo:
Neural stem cells (NSCs) are early precursors of neuronal and glial cells. NSCs are capable of generating identical progeny through virtually unlimited numbers of cell divisions (cell proliferation), producing daughter cells committed to differentiation. Nuclear factor kappa B (NF-kappaB) is an inducible, ubiquitous transcription factor also expressed in neurones, glia and neural stem cells. Recently, several pieces of evidence have been provided for a central role of NF-kappaB in NSC proliferation control. Here, we propose a novel mathematical model for NF-kappaB-driven proliferation of NSCs. We have been able to reconstruct the molecular pathway of activation and inactivation of NF-kappaB and its influence on cell proliferation by a system of nonlinear ordinary differential equations. Then we use a combination of analytical and numerical techniques to study the model dynamics. The results obtained are illustrated by computer simulations and are, in general, in accordance with biological findings reported by several independent laboratories. The model is able to both explain and predict experimental data. Understanding of proliferation mechanisms in NSCs may provide a novel outlook in both potential use in therapeutic approaches, and basic research as well.
Resumo:
The extensive use of cloud computing in educational institutes around the world brings unique challenges for universities. Some of these challenges are due to clear differences between Europe and Middle East universities. These differences stem from the natural variation between people. Cloud computing has created a new concept to deal with software services and hardware infrastructure. Some benefits are immediately gained, for instance, to allow students to share their information easily and to discover new experiences of the education system. However, this introduces more challenges, such as security and configuration of resources in shared environments. Educational institutes cannot escape from these challenges. Yet some differences occur between universities which use cloud computing as an educational tool or a form of social connection. This paper discusses some benefits and limitations of using cloud computing and major differences in using cloud computing at universities in Europe and the Middle East, based on the social perspective, security and economics concepts, and personal responsibility.
Resumo:
Mathematical relationships between Scoring Parameters can be used in Economic Scoring Formulas (ESF) in tendering to distribute the score among bidders in the economic part of a proposal. Each contracting authority must set an ESF when publishing tender specifications and the strategy of each bidder will differ depending on the ESF selected and the weight of the overall proposal scoring. This paper introduces the various mathematical relationships and density distributions that describe and inter-relate not only the main Scoring Parameters but the main Forecasting Parameters in any capped tender (those whose price is upper-limited). Forecasting Parameters, as variables that can be known in advance before the deadline of a tender is reached, together with Scoring Parameters constitute the basis of a future Bid Tender Forecasting Model.