984 resultados para Marine algae -- Morphology
Diversity of Gyrodactylids from some marine fishes in tropical and subtropical Queensland, Australia
Resumo:
Partial large subunit 28S rDNA sequences were obtained for specimens of Calicotyle (Monogenea: Monocotylidae) from eight different host species distributed worldwide to test the validity of some species and to address the question of host-specificity in others. Sequences obtained for Calicotyle specimens identified as C. kroyeri based on morphological methods from the type-host Raja radiata (Rajidae) and an additional host R. clavata, both from the North Sea, were identical. However, 'C. kroyeri' from the cloaca of R. naevus from Tunisia, Raja sp. A from Tasmania and R. radula from Tunisia differed from C. kroyeri from R. radiata by five (0.51%), 21 (2.13%) and 39 (3.96%) base pairs, respectively, over 984 sites. Therefore, it is likely that the specimens from Raja sp. A, R. radula and perhaps even from R. naevus are not C. kroyeri. Molecular results determined that the calicotylines from the cloaca of Urolophus cruciatus and U. paucimaculatus (Urolophidae) from southern Tasmania identified previously as C. urolophi are indeed identical. Large subunit 28S rDNA sequences of C. palombi and C. stossichi collected from the cloaca and rectal gland, respectively of Mustelus mustelus (Triakidae) from the coast of Tunisia differ sufficiently for these calicotylines to be considered separate and valid species. Our results indicate that some species of Calicotyle are not strictly host-specific, but that C. kroyeri may not be as widely distributed in rajids as was believed previously. Calicotyle specimens from rajids must be re-examined critically to determine whether there are morphological differences indicative of specific differences that may have been overlooked previously.
Resumo:
Sperm ultrastructure in three representative species of the marine bivalve family Spondylidae (spiny or thorny oysters) is examined and compared with available data on other bivalves, especially other families of the subclass Pteriomorphia. Spondylid spermatozoa are of the externally fertilizing aquasperm. type (ect-aquasperm). The acrosomal vesicle is conical with a deep basal invagination extending almost the full length of the vesicle. Vesicle contents are divisible into an inner, highly electron-dense anterior layer and a less dense posterior layer. The anterior layer is folded back on itself posteriorly and exhibits radiating plates (best developed peripherally). The vesicle rests on, and is partially embedded in, an extensive granular deposit of subacrosomal. material at the nuclear apex. This deposit extends partly into acrosomal vesicle invagination and also fills a broad depression in the anterior of the nucleus. No pre-formed axial rod (perforatorium) is present. The nucleus is round-pyriform and its contents coarsely fibrogranular. At the base of the nucleus, four broad depressions partially accommodate the midpiece mitochondria. The midpiece consists the four spherical mitochondria and the proximal and distal centrioles. The centrioles are arranged at approximately 90degrees to each other, and each consists of nine, angularly-oriented, microtubular triplets embedded in a granular matrix. A short, periodically banded rootlet connects the proximal centriole to the nuclear fossa, whereas the distal centriole, which forms the basal body to the flagellar axoneme, is anchored to the plasma membrane by nine terminally forked satellite fibres. Extensive deposits of putative glycogen rosettes surround the centrioles and mitochondria. The flagellum consists of a 9+2 axoneme sheathed by the plasma membrane. Spondylid spermatozoa strongly resemble those of the Pectinidae, further confirming the traditional view (based on comparative anatomy and shell morphology) of a close relationship between the Spondylidae and the Pectinidae. Differences in acrosomal shape and dimensions were noted between the three species examined, indicating potential taxonomic utility for comparative sperm ultrastructure within the Spondylidae.
Resumo:
Three coral reef fish species, Zanclus cornutus, Chaetodon vagabundus and Naso lituratus, were collected in French Polynesia and on the Great Barrier Reef, Queensland. These fish species were each infected by one morphologically similar digenean species in both localities; Schistorchis Zancli Hanson, 1953 was found in Zanclus cornutus. Preptetos laguncula Bray and Cribb, 1996 in Naso lituratus and Neohypocreadium dorsoporum Machida and Uchida, 1987 in Chaetodon vagabundus. In addition, on the Great Barrier Reef P. laguncula was also found in Naso unicornis and N. dorsoporum in Chaetodon ephippium and Chaetodon flavirostris. Morphometric differences between the species from the two sites were only slight. Sequences from the second internal transcribed spacer of the ribosomal DNA of each worm revealed total homology or negligible divergence between samples from hosts caught in French Polynesia and on the Great Barrier Reef. These results show that across more than 6000 km these digeneans are similar in morphology and genotype. Some species of fishes and molluscs a-re considered to have distributions that encompass the entire tropical Indo-West Pacific. These findings suggest that at least some of their parasites have similarly broad distributions. (C) 2001 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Pectenotoxins - an issue for public health - A review of their comparative toxicology and metabolism
Resumo:
Pectenotoxins (PTXs) are a group of toxins associated with diarrhetic shellfish poisoning (DSP) and isolated from DSP toxin-producing dinoflagellate algae. Consumption of shellfish contaminated with PTXs has been associated with incidences of severe diarrhetic illness resulting in hospitalisation. Concern has been raised for public health following the discovery that these toxins are not only hepatotoxic and can cause diarrhetic effects in mammals, but that they are potently cytotoxic to human cancer cell lines and have been found to be tumour promoters in animals. With advances in knowledge and technology, more PTXs are being identified, but little is known of their toxicology and the potential impact these toxins may have on public health in the long term. Without such information, adequate health-risk assessments for the consumption of shellfish contaminated with PTXs cannot be performed. This review gives a brief introduction to diarrhetic shellfish toxins, details the known toxicology and metabolism of PTXs in animals, and discusses known incidences of PTX poisoning in humans. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The composition of the Pyrgulidae and its relationships to other member families of the caenogastropod superfamily Rissooidea are examined after a consideration of new anatomical (including gross anatomy, sperm ultrastructure), conchological (including protoconch features), ecological, biogeographical and palaeontological data and a re-evaluation of existing literature. Pyrgulidae can be distinguished from hydrobiids unequivocally only with the aid of the radula. Sperm ultrastructural features suggest a very close relationship between the Pyrgulidae, the Hydrobiidae and the Bithyniidae (in fact no family-diagnostic sperm characters can be found to separate these three taxa). Based upon neontological and fossil evidence it is likely that pyrgulids represent a Miocene offshoot from a paratethyal hydrobiid lineage. Pyrgulids may also represent the stock from which the baicaliids arose, in which case the Pyrgulidae must be considered a paraphyletic group. The huge biogeographic gap between the Caspian Sea and Lake Baikal is to some extent bridged by the finding of a Neogene pyrgulid from the Altai Mountains. An alternative scenario for the origin of baicaliids is presented.
Resumo:
Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef(One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 muM NH4+; 2.3 muM PO4-3) rapidly declined, reaching near-background levels (mean = 0.9 muM NH4+; 0.5 muM PO4-3) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 muM NH4+; 5.1 muM PO4-3 declining to means of 11.3 muM NH4+ and 2.4 muM PO4-3 at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments,were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients, ENCORE has shown that reef organisms and processes investigated ill situ were impacted by elevated nutrients. Impacts mere dependent on dose level, whether nitrogen and/or phosphorus mere elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment mere visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs, inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
The relationships between reproductive condition, level of reproductive investment and adrenocortical modulation to capture stress in marine turtles form the basis of this study. When subjected to either capture or ecological stressors, nesting marine turtles have demonstrated adrenocortical responses that are both small in magnitude, and slow in responsiveness. These observations were further investigated to determine whether this minimal stress response was a physiological strategy to maximize reproductive investment in adult green Chelonia mydas and hawksbill Eretmochelys imbricata turtles. Female green and hawksbill turtles exhibited a decrease in adrenocortical responsiveness with progressive reproductive condition. Breeding turtles exhibited most suppression of their adrenocortical response to capture compared to both non-breeding and pre-breeding female counterparts. Nesting green turtles maintained a suppressed adrenocortical response to capture throughout the nesting season despite decreased reproductive investment. In contrast, male green and hawksbill turtles were less able to modulate their corticosterone (B) response to acute capture stress. During breeding, male turtles possessed significantly greater adrenocortical responses to capture than females. These results could indicate that the large reproductive investment necessary for female marine turtle reproduction might underlie the marked decrease in adrenocortical responsiveness. This hormonal mechanism could function as one strategy by which female marine turtles maximize their current reproductive event, even though under certain situations this mechanism could entail costs to female survival.
Resumo:
The purpose of this study was to determine whether the addition of iron alone or in combination with nitrate affects growth and photosynthesis of the scleractinian coral, Stylophora pistillata, and its symbiotic dinoflagellates. For this purpose, we used three series of two tanks for a 3-week enrichment with iron (Fe), nitrate (N) and nitrate + iron (NFe). Two other tanks were kept as a control (C). Stock solutions of FeCl3 and NaNO3 were diluted to final concentrations of 6 nM Fe and 2 muM N and continuously pumped from batch tanks into the experimental tanks with a peristaltic pump. Results obtained showed that iron addition induced a significant increase in the areal density of zooxanthellae (ANOVA, p = 0.0013; change from 6.3 +/- 0.7 x 10(5) in the control to 8.5 +/- 0.6 x 10(5) with iron). Maximal gross photosynthetic rates normalized per surface area also significantly increased following iron enrichment (ANOVA, p = 0.02; change from 1.23 +/- 0.08 for the control colonies to 1.81 +/- 0.24 mu mol O-2 cm(-2) h(-1) for the iron-enriched colonies). There was, however, no significant difference in the photosynthesis normalized on a per cell basis. Nitrate enrichment alone (2 muM) did not significantly change the zooxanthellae density or the rates of photosynthesis. Nutrient addition (both iron and nitrogen) increased the cell-specific density of the algae (CSD) compared to the control (G-test, p = 0.3 x 10(-9)), with an increase in the number of doublets and triplets. CSD was equal to 1.70 +/- 0.04 in the Fe-enriched colonies, 1.54 +/- 0.12 in the N- and NFe-enriched colonies and 1.37 +/- 0.02 in the control. Growth rates measured after 3 weeks in colonies enriched with Fe, N and NFe were 23%, 34% and 40% lower than those obtained in control colonies (ANOVA. p = 0.011). (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The photochemical efficiency of symbiotic dinoflagellates within the tissues of two reef-building corals in response to normal and excess irradiance at wafer temperatures < 30 C were investigated using pulse amplitude modulated (PAM) chlorophyll fluorescence techniques, Dark-adapted F-v/F-m showed clear diurnal changes, decreasing to a low at solar noon and increasing in the afternoon. However, F-v/F-m also drifted downwards at night or in prolonged darkness, and increased rapidly during the early morning twilight. This parameter also increased when the oxygen concentration of the wafer holding the corals was increased. Such changes have not been described previously, and most probably reflect state transition's associated with PQ pool reduction via chlororespiration. These unusual characteristics may be a feature of an endosymbiotic environment, reflective of the well-documented night-time tissue hypoxia that occurs in corals. F-v/F-m decreased to 0.25 in response to full sunlight in shade-acclimated (shade) colonies of Stylophora pistillata, which is considerably lower than in light-acclimated (sun) colonies. In sun colonies, the reversible decrease in F-v/F-m was caused by a lowering of F-m and F-o suggesting photoprotection and no lasting damage. The decrease in F-v/F-m, however, was caused by a decrease in F-m and an increase in F-o in shade colonies suggesting photoinactivation and long-term cumulative photoinhibition. Shade colonies rapidly lost their symbiotic algae (bleached) during exposure to full sunlight. This study is consistent with the hypothesis that excess light leads to chronic damage of symbiotic dinoflagellates and their eventual removal from reef-building corals. It is significant that this can occur with high light conditions alone.
Resumo:
A novel alphavirus was isolated from the louse Lepidophthirus macrorhini, collected from southern elephant seals, Mirounga leonina, on Macquarie Island, Australia. The virus displayed classic alphavirus ultrastructure and appeared to be serologically different from known Australasian alphaviruses. Nearly all Macquarie Island elephant seals tested had neutralizing antibodies against the virus, but no virus-associated pathology has been identified, Antarctic Division personnel who have worked extensively with elephant seals showed no serological evidence of exposure to the virus. Sequence analysis illustrated that the southern elephant seal (SES) virus segregates,vith the Semliki Forest group of Australasian alphaviruses. Phylogenetic analysis of known alphaviruses suggests that alphaviruses might be grouped according to their enzootic vertebrate host class, The SES virus represents the first arbovirus of marine mammals and illustrates that alphaviruses can inhabit Antarctica and that alphaviruses can be transmitted by lice.