948 resultados para Marble waste
Resumo:
Ultramarine pigments were successful synthesized from zeolite A obtained from kaolin waste. This waste has been used as an excellent source of silicon and aluminum for zeolite synthesis because of its high kaolinite concentrations and low contents of other accessory minerals. The cost is naturally less than the industrialized product. Color additives (Sulfur and Sodium Carbonate) were mixed with different proportions of zeolite A and further calcined for 5 h at 500 °C. They were characterized by XRD and XRF in addition to visual classification by color and shade. These products show colors from blue to green at different shades, both influenced by the amount of additives and cooling rate after calcination. Thus, a different quantity of the same additives in the same zeolitic matrix provides an increase in the color intensity. Cooling rate after calcination induces the color change which is substantially important in the pigments production.
Synthesis and characterization of zeolite NaP using kaolin waste as a source of silicon and aluminum
Resumo:
The synthesis of zeolite NaP using kaolin waste, from the Amazon region, as a predominant source of silicon and aluminum has been studied. The zeolitisation process occurred in hydrothermal conditions using static autoclaving and the effects of time, temperature, and the Si/Al ratio were investigated. The starting material and the phases formed as reaction products were characterized by XRD, SEM and FTIR. The results showed that pure zeolite NaP is hydrothermally synthesized, at 100 °C for 20 hours, using metakaolin waste material in alkaline medium in presence of additional silica. The XRD and SEM analyses indicate that the synthesized zeolite presents good crystallinity.
Resumo:
In this work, a method was developed for the application of red mud, an alkaline leaching waste, from a bauxite processing plant located in northern Brazil (Amazon region) as starting material for heavy clay products. Samples were prepared by pressing blends of red mud and clay, which were then fired at temperatures from 900 ºC to 1190 ºC. Characterization was carried out by chemical analysis, differential thermal analysis (DTA) and X-ray diffraction (XRD), and the following ceramic properties were evaluated: water absorption, linear shrinkage and flexural strength. In order to evaluate the Na+ stability in the dense ceramic, leaching tests were also carried out on the specimens after sintering process. Results indicated that samples with 50 and 70 wt% of red mud are proper for being used in the production of ceramic bodies, due to its excellent properties, mainly high mechanical resistance and low water absorption, showing thus, an option to minimizing the environmental impacts caused by the aluminum industry.
Resumo:
Between 75% and 90% of the waste produced by health-care providers no risk or is "general" health-care waste, comparable to domestic waste. The remaining 10-25% of health-care waste is regarded as hazardous due to one or more of the following characteristics: it may contain infectious agents, sharps, toxic or hazardous chemicals or it may be radioactive. Infectious health-care waste, particularly sharps, has been responsible for most of the accidents reported in the literature. In this work the preliminary risks analysis (PRA) technique was used to evaluate practices in the handling of infectious health-care waste. Currently the PRA technique is being used to identify and to evaluate the potential for hazard of the activities, products, and services from facilities and industries. The system studied was a health-care establishment which has handling practices for infectious waste. Thirty-six procedures related to segregation, containment, internal collection, and storage operation were analyzed. The severity of the consequences of the failure (risk) that can occur from careless management of infectious health-care waste was classified into four categories: negligible, marginal, critical, and catastrophic. The results obtained in this study showed that events with critics consequences, about 80%, may occur during the implementation of the containment operation, suggesting the need to prioritize this operation. As a result of the methodology applied in this work, a flowchart the risk series was also obtained. In the flowchart the events that can occur as a consequence of a improper handling of infectious health-care waste, which can cause critical risks such as injuries from sharps and contamination (infection) from pathogenic microorganisms, are shown.
Resumo:
A novel carbon composite was prepared from a mixture of coffee waste and clay with inorganic:organic ratio of 1.3 (CC-1.3). The mixture was pyrolysed at 700 °C. Considering the application of this adsorbent for removal of anionic dyes, the CC-1.3 was treated with a 6 mol L-1 HCl for 24 h to obtain ACC-1.3. Fourier transform infrared (FTIR), N2 adsorption/desorption curves, scanning electron microscope (SEM) and powder X-ray diffractometry (XRD) were used for characterisation of CC-1.3 and ACC-1.3 carbon adsorbents. The adsorbents were effectively utilised for removal of reactive blue 19 (RB-19) and reactive violet 5 (RV-5) textile dyes from aqueous solutions. The maximum amounts of RB-19 dye adsorbed at 25 °C are 63.59 (CC-1.3) and 110.6 mg g-1 (ACC-1.3), and 54.34 (CC-1.3) and 94.32 mg g-1 (ACC-1.3) for RV-5 dye. Four simulated dye-house effluents were used to test the application of the adsorbents for treatment of effluents.
Resumo:
PURPOSE:To investigate the effects of occupational exposure to waste anesthetic gases on genetic material and antioxidant status in professionals during their medical residency. METHODS:The study group consisted of 15 medical residents from Anesthesiology and Surgery areas, of both genders, mainly exposed to isoflurane and to a lesser degree to sevoflurane and nitrous oxide; the control group consisted of 15 young adults not exposed to anesthetics. Blood samples were drawn from professionals during medical residency (eight, 16 and 22 months of exposure to waste anesthetic gases). DNA damage was evaluated by comet assay, and antioxidant defense was assessed by total thiols and the enzymes glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (CAT). RESULTS:When comparing the two groups, DNA damage was significantly increased at all time points evaluated in the exposed group; plasma thiols increased at 22 months of exposure and GPX was higher at 16 and 22 months of exposure. CONCLUSION:Young professionals exposed to waste anesthetic gases in operating rooms without adequate scavenging system have increased DNA damage and changes in redox status during medical residency. There is a need to minimize exposure to inhalation anesthetics and to provide better work conditions.
Resumo:
The disposal of chemical waste and the precision of analyses of the neutral (NDF) and acid (ADF) detergent fiber contents were evaluated utilizing conventional (Van Soest) and alternative methods of analyses. The recovery of acetone promoted both economic and environmental gains, with a recovery rate of 84.12%. The precision of the analyses was not observed in most of the determinations with reutilization of chemical waste in all the analytical methods tested, in spite of promoting decrease in cost, time invested in the preparation of solutions and the disposal of chemical waste.
Resumo:
This study aimed to investigate physical performance of particleboards produced with waste from sawmills, containing different wood species, and two adhesives: urea-formaldehyde (UF) based resin and castor-oil (PU) based bi-component polyurethane resin. Panels were produced with nominal density 0.8gcm(-3); pressing temperature 110 degrees C; pressing time 10 min; specific pressure 5 MPa. Water absorption (2 and 24h); thickness swelling (2 and 24h); density; and moisture content were investigated. Results confirmed that the produced panels presented compatible physical properties in comparison with other researches referred in literature, proving the feasibility of inputs employed. Panels produced PU showed better performance than those produced with UF.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The influence of bovine rumen fluid inoculum during anaerobic treatment of the organic fraction of municipal solid waste (MSW) was studied in this work. The parameters adopted for evaluation were the biostabilization constant of total volatile solids (TVs) and the biostabilization time of the chemical oxygen demand (COD) applied to the reactors. The work was realized in four anaerobic batch reactors of 20 1 capacity each, during a period of 365 days. The proportions between MSW/inoculum loaded in the reactors were Reactor A (100%/0%), Reactor B (95%/5%), Reactor C (90%/10%) and Reactor D (85%/15%). The necessary time for biostabilization of half of the applied COD was 459, 347, 302 and 234 days and the average of methane concentration in the biogas produced was 3.6%, 13.0%, 25.0% and 42.6% for Reactors A, B, C and D, respectively. The data obtained affirm that the inoculum used substantially improved the performance of the process. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Techniques of production of enthomopatogenic bacteria are developed aiming to increase the productivity and to reduce the costs of the fermentative process. Like this, it has been using agroindustrial wastes or by-products as nutrient sources in culture medium, having been used, in this study, the manipueira, a by-product of the processing of the cassava flour. Fermentations were performed in flasks of Erlenmeyer of 500 mL containing 250 mL of culture media, conditioned in shaker at 180 r.p.m. and 28°C, and the media were composed by manipueira, in concentrations that varied between 400 and 1000 mL/L. The time of the process varied between 48 and 120 hours. They appraised the following parameters: cellular growth, the production of spores, the reduction of organic matter (COD analysis) and the variation of reduction sugar. Although there was a proportional cellular growth to the manipueira concentration, the production of spores was similar in all the cases, at the end of the process, in spite of the smallest speed of production of the same ones in the highest concentrations. In relation to the variation of COD, it has, also, a percentile minor of reduction in the highest concentrations. In the analysis of variation of reduction sugars, the higher concentrations are the ones that they present larger slowness in the reduction of this.