966 resultados para Maine Sea Fisheries
Resumo:
For a period of one year beginning December 1977, drift card experiments were conducted off the western and southern coasts of Panay Island to determine the surface currents in the area. Of a total 2,384 drift cards released during the study, 382 (16.02%) were recovered, 92% of them within 30 days following dispatch. The surface currents in the study area are strongly influenced, in direction and speed, by the prevailing monsoon winds. During the NE monsoon period, the surface currents move away from the coast; during the SW monsoon, toward and/or parallel to the coast. Based on the results, the probable movement and transport of milkfish (Chanos chanos) eggs and larvae from the spawning ground to the fry collection ground are also discussed.
Resumo:
Two species of unexploited deep sea fish Peristedion adeni and Peristedion weberi caught from the Exclusive Economic Zone of India were subjected to fermentation at ambient temperature (30 ± 2°C) in the presence of salt in 4:1 ratio. Periodical analysis of the fermented product was carried out up to one year. The sauces had brownish yellow colour and conformed to special grade of the standards prescribed by the Food and Drug Administration. Further solubilization of protein after 9 month's maturation was not appreciable.
Resumo:
A laboratory based 2x3 factorial experiment was conducted for 12 weeks to investigate the influences of dietary lipid and phosphorus (P) levels on retention and excretion of phosphorus and nitrogen (N) in fingerling red sea bream. Two levels of lipid (210 and 260 g/kg) and three levels of phosphorus (17, 14 and 12 g/kgˉ¹) in the dry diets were tested. Duplicate groups of 25 red sea bream (average weight 3.74±0.07 g) per 60L glass tank were fed experimental diets three times a day near to satiation level at 22 to 28°C water temperature. A reduction in dietary fish meal from 500 to 300 g/kg dry diet, corresponding to a supplementation in both dietary lipid and P resulted in significant increase in both P and N retention which resulted in the reduction of their excretion by red sea bream. The overall results of the present study demonstrated that both lipid and phosphorus supplementation are necessary for developing less-polluting feed which in turn, reduce fish meal level in the diet of fingerling red sea bream. Further studies in this regard with different size and age groups of red sea bream are warranted.
Resumo:
Phylogenetic relationships among all described species (total of 12 taxa) of the decapoda, were examined with nucleotide sequence data from portions of mitochondrial gene and cytochrome oxidase subunit I (COI). The previous works on phylogeny proved that the mitochondrial COI gene in crustacean is a good discriminative marker at both inter- and intra-specific levels. We provide COI barcode sequences of commertial decapoda of Oman Sea, Persian Gulf, Iran. Industrial activities, ecologic considerations, and goals of the decapoda Barcode of Life campaign make it crucial that species of the south costal be identified. The reconstruction of evolut phylogeny of these species are crucial for revealing stock identity that can be used for the management of fisheries industries in Iran. Mitochondrial DNA sequences were used to reconstruct the phylogeny of the Penaeus species of marine shrimp. For this purpose, DNA was extracted using phenol- chloroform well as CTAB method. The evolutionary relationships among 12 species of the decapoda were examined using 610 bp of mitochondrial (mt) DNA from the cytochrome oxidase subunit I gene. Finally the cladograms were compared and the resulted phylogenetic trees confirmed that the Iran's species origin is Indo-west pacific species. Iran's species, which were not grouped with the other decapoda taxa seem to always form a sister clade with Indo-west pacific species with strong bootstrap support 100%. The result completely agrees with the previously defined species using morphological characters.However, we still lack any comprehensive and clear understanding of phylogenetic relationships in this group.
Resumo:
For study the genetic diversity of Caspian brown trout population in five rivers in the southern part of Caspian Sea in Iran 182 number generators in the fall and winter of 1390 were collected in Chalus, Sardab Rud, Cheshmeh Kileh, Kargan Rud and Astara rivers. Then about 3-5 g of soft and fresh tissue from the bottom fin fish removed and were fixed in ethanol 96°. Genomic DNA was extracted by using ammonium acetate, then quantity and quality of the extracted DNA were determined by using spectrophotometry and horizontal electrophoresis in 1% agarose gel. The polymerase chain reaction was performed by using 16 SSR primers and sequencing primers (D-Loop) and the quality of PCR products amplified by SSR method were performed by using horizontal electrophoresis in 2% agarose gel. Alleles and their sizes were determined by using vertical electrophoresis in 6% polyacrylamide gel and silver nitrate staining method. Gel images were recorded by gel documentarian, the bands were scored by using Photo- Capt software and statistical analysis was performed by using Gene Alex and Pop Gene software. Also the PCR sequencing products after quality assessment by usinghorizontal electrophoresis in 1.5% agarose gel were purified and sent to South Korea Bioneer Corporation for sequencing. Sequencing was performed by chain termination method and the statistical analysis was performed by using Bio- Edit, Mega, Arlequin and DNA SP software. The SSR method, 5 pairs of primers produced polymorphic bands and the average real and effective number of alleles were calculated 5.60±1.83 and 3.87±1.46 in the Cheshmeh Kileh river and 7.60±1.75 and 5.48±1.32 in the Karganrud river and the mean observed and expected heterozygosity were calculated 0.44 ±0.15 and 0.52 ±0.16 in the Cheshmeh Kileh river and 0.50 ±0.11 and 0.70±0.13 in the Karganrud river. Analysis of Molecular Variance results showed that significant differences in genetic diversity between and within populations and between and within individuals in the studied rivers (P<0.01). The sequencing method identified 35 different haplotype, the highest number of polymorphic position (251) and haplotype (14) were observed in the Chalus river. The highest mean observed number of alleles (2.24±0.48) was calculated in the Sardabrud river, the highest mean observed heterozygosity (1.00±0.03) was calculated in the Chalus river and the highest mean nucleotide diversity (0.13±0.07) was observed in the Sardabrud river and mean haplotype diversity was obtained (1) in three studied rivers. The overall results show that there are no same population of this fish in the studied rivers and Karganrud and Chalus rivers in the SSR and sequencing methods had the highest levels of genetic diversity.
Resumo:
Caspian Sea has gone under a lot of changes due to human influences and the unwanted presence of a ctenophora Menomiopsis leidyi which has greatly changed the structure of planktons in the last recent years. Therefore, this study was carried out in order to determine these changes in the zooplankton community. the Sampling was done in 8 transacts in Astara, Anzali, Sefidrood, Tonekaboun, Noushahr, Babolsar, Amirabad and Bandar Torkaman coastal waters at 5 different depths including 5, 10, 20, 50 and 100 m. Sampling was carried out in four seasons of spring, summer, autumn and winter during 2008, 2009 and 2010 on board of R/V Gilan. Altogether, 12 species of zooplankton were identified in 2008, 22 species in 2009 and 14 species in 2010. The zooplankton included four groups: copepoda (4 species), cladocera (8species), rotatoria (10 species) and protozoa (2 species).The increase of diversity in 2009 was due to cladocera and rotatoria groups. The abundance of zooplankton in the spring was 5074 + 7807 ind/m3 more than other season in 2008. The abundance of copepoda in the summer reached the highest value of 3332 ind/m3 and since autumn the abundance gradually decreases and in the winter reached to the lowest value. The most abundance of cladocera was 797 ind/m3 in winter and decreased in summer and autumn. The abundance of rotatoria was 2189 ind/m3 in winter. rotifera and copepoda consisted the main population of Zooplanktons in the winter. The results of 2009 and 2010 showed that the abundance of zooplankton in winter was 2.6 fold of autumn, 1.6 fold of summer and 1.1 fold (1/9 fold in 2010)of spring. After increasing increased of temperature, phytoplankton, and zooplankton in summer, M.leidyi increased too. In the autumn M. leidyi reached to the highest rate and decreased zooplankton. The maximum population of zooplankton was in the layer 0-20 m and in the layer more than 20 meters, the abundance of zooplankton decreased very much. In 216 2008, 2009 and 2010, the abundance of zooplankton was 87, 77 and 77 percent in the layer 0-20 m respectively. In this study, the thermocline was observed in the layer 10 – 20 meters in the spring, that formed a thin layer but in the summer it was in the layer 20 to 50 meters. Temperature decreased between 11 to 15 oC in this layer. The variation of temperature between surfaces to bottom was 10 to 13 oC in spring, 19 to 21 in summer, about 9 oC in autumn and maximum 3 oC in winter. The most biomass of zooplankton was in the west. The biomass of zooplankton in central west and east of Southern of Caspian Sea was 54 %, 22 % and 24 % respectively in 2008, in 2009 was 48%, 33% and 20% respectively and in 2010 was 54 %, 29 % and 16 % respectively .The biomass decreased from west to east. The model of zooplankton designed by principal component analysis (PCA)and linear regression for Southern of Caspian Sea.
Resumo:
Linear alkylbenzene sulfonate (LAS) are widely used in detergent industry. Due to contaminants entering the water, and the effects of their accumulation in fish, LAS, has a great importance in environmental pollution. In the present study, accumulation of LAS and its histological effects on gill tissue, liver and kidney of Caspian kutum (Rutilus frisii kutum) were studied. Caspian kutum is the most important and most valuable teleosts of the Caspian Sea. Due to releasing Caspian Kutum in rivers and Anzali Lagoon and unlimited entry of wastewater to the aquatic ecosystem, research on the impact of LAS on Caspian kutum is important. In the present study, fish exposed to sublethal concentrations of LAS (0.58, 1.16 and 2.32 mg/l) for 192 hours. Control treatments with three replicates at 0, 24, 48, 72, 96 and 192 hours were done. For assessments of the histological effects of LAS, tissue sections prepared and by using Hematoxylin - Eosin were stained, then the prepared sections, examined by light microscopy. For determination of the bio accumulation of LAS, the soxhlet extraction and solid phase extraction was performed to determine the amount of LAS using HPLC with fluorescence detector. According to results average of bioconcentration factor and LAS concentrations in fish had reached stable levels after approximately 72 h and thus represented steady state BCF values in this species. The value of steady-state bio-concentration factor of total LAS was 33.96 L.Kg- 1 and for each of the homologous C10-n-LAS, C11-n-LAS, C12-n-LAS and C13-n- LAS were 3.84, 6.15, 8.58 and 15.57 L.Kg-1 respectively. According to the results obtained in gills exposed to LAS, histopathological alteration include hypertrophy, lifting of lamella epithelium, edema, clubbing of lamellae hyperplasia, lamellar fusion and aneurysm were seen. In liver tissue exposed to three concentrations of LAS, congestion and dilation of sinusoids, irregular-shaped nuclei and degeneration in the hepatocyte, vacuolar degeneration and necrosis were observed. In kidney exposed to three concentrations of LAS, reduction of the interstitial haematopoietic tissue, degeneration in the epithelial cells of renal tubule, tubular degeneration, necrosis, shrinkage and luminal occlusion were observed. According to the results the most alteration due to exposure to LAS was seen in the gill tissue. None of the control samples showed histological effects of LAS.
Resumo:
This study was conducted to determine reproduction characteristics, diet regime, age structure and population dynamics parameters of the vimba vimba persa (Pallas, 1811) in Mazandaran waters of the Caspian Sea, from October 2008 to September 2009. A total of 994 specimens were monthly collected by beach seine and cast net from six fish landings of Ramsar, Tonekabon, Chaloos, Mahmood Abad, Sari and Behshahr. Biometric characters were measured for each specimen at the laboratory. Scales were used for age determination. Sex determination and fecundity were determined. Population dynamic parameters as well as stock assessment including cohort analysis were estimated using FISAT software. The finding showed that the mean of fork length and body weight of the Caspian Vimba were 168.4±2.6 mm and 71.94±32.24 g respectively. Strong correlation was found between these two variables (a= 0.012; b = 3.047; r2 = 0.955). 92 specimens were studied from the fecundity point of view. This species was found to have more abundance in spring (esp. Apr-May). The samples composed of 397(42.6%) male, 537(57.4%) female; Overall sex ratio (M: F =1: 1.35) was significantly different from the expected 1:1 ratio (p ≤0.05). The advanced stages of maturity (4th & 5th) were found in April and May. The highest Gonadosomatic Index in female was in May and the lowest one was in July. This fish is therefore a spring spawner. The maximum absolute and relative fecundities were 34640 and 260.9, respectively; the minimum absolute and relative fecundities were 5400 and 94.5 respectively. The averages of absolute and relative fecundities were 17198±7710 and 171.85±48.8, respectively. Coefficient vacuity index was 59.2% which indicates that this fish is mesophagous. Among of living creature consumes by Caspian Vimba mollusks, 76 arthropods, worms, plants, detritus and fishes were found 32.9% , 26.7% , 13.4% , 17% , 4.4% and 1.6% respectively. The infinite fork lengths were 261 mm for females, 25mm for males and 261 mm for both sexes respectively. For population growth and mortality parameters; K ( 0.28 per year for both sexes, 0.3 per year for males, 0.33 per year for females); t0 ( -0.65 year for both sexes, -0.23 year in females, -0.51 year in males ); Φ' ( 2.28 ); Z ( 0.98 per year ); M ( 0.59 per year); F ( 0.39 per year) and Exploitation coefficient was 0.4. The analysis showed that total biomass and MSY were 1336 and 528.8 tonnes respectively.
Resumo:
This project was done for identifying the mesopelagic fish of the Iranian waters of Oman Sea, during two year from 2008 to 2010. The specimens were collected using two trawler vessel from nine station. All the specimens were fixed in formalin then in 70% alcohol and carried to the laboratory. In total of 19 species belonged to 14 families of 6 orders identified including: Echinorhinidae, Stomidae, Phosichthyidae, Synodontidae, Paralepididae, Myctophidae, Acropomatidae, Priacanthidae, Pentacerotidae, Champsodontidae, Gempylidae, Trichiuridae, Nomeidae and Congridae. Of which 17 species were identified up to species level including: Echinorhinus brucus, Bathophilus indicus, Chauliodus sloani, Harpadon nehereus, Lestrolepis japonica, Benthosema pterotum, Diaphus garmani, Diaphus effulgens, Bolinichthys photothorax, Acropoma japonicum, Synagrops adeni, Cookeolus boops, Histiopterus typus, Champsodon sagittus, Neoepinnula orientalis, Trichiurus lepturus, Cubiceps baxteri. Vinciguerria was identified up to genus level because only one specimen caught during the survey and one species (Congridae) was identified up to family level because only 3 specimens of this fish in early stage of life were caught and their characters were not suitable for identify up to species level. The highest species belong to Myctophidae family of Myctophiformes order.
Resumo:
The Great lizardfish is one of the commercial demersal fishes in the Persian Gulf and Oman Sea. In this study the food preference index (FPI), Fullness index (FI) and stomach contents of Saurida tumbil were evaluated to assess the quantity and kind of food which this species consumes in the study area. The samples were collected monthly from commercial bottom trawl fisheries in main fishing grounds of eastern Strait of Hormuz. A total of 346 specimens were collected during years 2009-2010 of which 269 specimens were female and 77 specimens were male. The minimum and maximum total length were 161 and 590 mm, respectively with the highest frequency in length group of 350-370mm. Results showed that 20.9% of stomachs were full, 18.9% were semi-full and 60.2% were empty. The main stomach contents (FPI=80.2%) were fishes and minor stomach contents (FPI=25.7%) were crustacean (Specially crab and shrimp) and cephalopods were found as random food. The minimum and maximum FIs were 2.5 and 42.5 in December and September respectively; and the overall CV was 60.2. The results indicate that this fish is a relatively frugal species which consumes fishes as main food and there is no difference in feeding of male and female.
Resumo:
In order to carry out Biometric studies, 75 samples were caught from 3 locations ( Tajan river, Sefidrud and Shirud) using Salic and the length (±1 mm) and weights (± 5 gr) of samples were determined. Using One-way ANOVA by SPPSS software, there wasn’t significant difference between locations in length and fecondity (P ≥0.01(, but there was significant difference between Shirud and tajan samples with sefidrud in weight ) P≤0.01(. In order to carry out genetic variation studies, 210 fish were caught from 3 different regions of the Iranian coastline (Khoshkrud, Tonekabon, Gorganrud) and 1 region in Azerbaijan (Waters of the Caspian Sea close to Kura River mouth) during 2008-2009 . Genomic DNA was extracted of fin using the phenol-chloroform. The quantity and quality of DNA from samples were assessed by spectrophptometer and 1% agarose gel electro-phoresis. PCR was carried out using 15 paired microsatellite primers. PCR products were separated on 8% polyacrylamide gels that were stained using silver nitrate. Molecular weight calculate using UVTech software. The recorded microsatellite genotypes were used as input data for the GENALEX software version 6 package in order to calculate allele and genotype frequencies, observed (Ho) and (He) expected heterozygosities and to test for deviations from Hardy-Weinberg equilibrium. Genetic distance between two populations was estimated from Nei standard genetic distance and genetic similarity index (Nei, 1972). Genetic differentiation between populations was also evaluated by the calculation of pairwise estimates of Fst and Rst values. From 15 SSR markers were used in this investigation, 9 of them were polymorph. Average of expected and observed heterozygosity was 0.54 and 0.49 respectively. Significant deviations from Hardy-Weinberg expectations were observed in all of location except Anzali lagoon- autumn in AF277576 and EF144125, Khoshkrud in EF144125 and Gorganrud and Kura in AF277576. Using Fst and Rst there was significant difference between locations ) P≤0.01(. According to Fst , the highest population differentiation (Fst= 0.217) was between Gorganrud and Khoshkrud that have the lowest Nm and the lowest (Fst= 0.086) was between Gorganrud and Tonekabon that have the highest Nm. Using Rst the highest population differentiation (Rst= 0.271) was between Tonekabon and spring Anzali lagoon and the lowest (Rst= 0.026) was between Tonekabon and Autumn Anzali 159 lagoon. Also the difference between Spring Anzali lagoon and Autumn Anzali lagoon was noticeable (Fst=0.15). AMOVA analysis with consideration of 2 sampling regions (Iran and Azerbaijan) and 7 sampling locations (Iran: Khoshkrud, Tonekabon, Gorganrud, Spring Anzali lagoon and Autumn Anzali lagoon ; Azerbaijan: the Kura mouth) revealed that almost all of the variance in data namely 83% )P≤0.01( was within locations, Genetic variances among locations was 14% )P≤0.01( and among regions was 3% )P≤0.01(. The genetic distance was the highest (0.646) between Gorganrud and Autumn Anzali lagoon populations, whereas the lowest distance (0.237) was between Gorganrud and Tonekabon River. Result obtained from the present study show that at least 2 different population of Rutilus frissi kutum are found in the Caspian sea,which are including the kura river population and the southern Caspian sea samples and it appears that there is more than one population in southern Caspian sea that should be attantioned in artifical reproduction Center and stoke rebilding.
Resumo:
In order to come up with the responsible fishing pattern of common carp, there was a need to identify some of the biological characteristics and stock assessment of carp in Iranian waters of the Caspian Sea .The fork length ,weight ,age ,growth parameters of von bertalanffy and mortality rates of common carp were estimated from oct 2006 to sept 2007.Based on the exponential relationship between length and weight in the size range 6.3-65.6 cm ,b was calculated 2.895, 2.843 and 2.925 respectively for combined sexes ,males and females. The mean condition factor was 1.9 which is close to the ideal condition.The results from measuring 3170 specimens ,were showed the first fork length of maturity was 30 cm for males and 32 cm for females. The results indicated that females were predominate and sex ratio was 0.66:1 (M:F) and chi-squares analysis showeda significant difference between males and females.(p<0.05).Length infinity and growth coefficient were calculated by three different methods as below: Length frequency analysis : k=0.17 L∞ =68.04 Age-Length Key k=0.15 L∞ =74.25 Back calculation : k=0.14 L∞ =68.4 The mortality parameters and exploitation rate were estimated as below : Z=0.73 per year M=0.31 per year F=0.42 per year E=0.56 Refer to amount of common carp catch in 2007 -08 ,biomass was calculated 9640.2 tones by jone's cohort analysis and MSY 2374.5 tones.According to analysis ,the number of common carp in the distribution area (Iranian part of the Caspian Sea ) was estimated 24 millions in the 2006-07.
Resumo:
Populations of kilka in the Caspian Sea have important role in the food chain. This study was conducted to determine population parameters of three species of kilka in the south of the Caspian Sea, during 2006-2007. Mean length was 102.4±9.7 mm for common kilka, 117.8±6.9 mm for anchovy and 119.5±10.9 mm for bigeye. The relationship between length and weight indicated the negative allometric growth in the all three species. Mean age for common kilka, anchovy and bigeye were 3.6, 4.6 and 4.6 years, respectively. Sex ratio (M:F) were 0.52:1 for anchovy, 0.60:1 for common kilka and 1.60:1 for bigeye. The value of growth coefficient (K) was the highest (0.321) for the common kilka, (0.267) for the bigeye, and the lowest for the anchovy kilka (0.245). Total mortality estimated from the descending of the catch curve using the age structure, Z=1.280 yr-1 for common kilka, Z=1.067 yr-1 for anchovy, and Z=1.015 yr-1 for bigeye. Natural mortality (M) were estimated using Pauly formula as M=0.622, M=0.537 and M=0.503 per year for common kilka, bigeye and anchovy, respectively. Value of fishing mortality (F) were estimated from Z and M, as F=0.658 for common kilka, F=0.564 for anchovy and F=0.478 for bigeye. The exploitation rate (E) were estimated E=0.514 for common kilka, E=0.528 for anchovy and E= 0.471 for bigeye. The estimate of MCY (Maximum Constant Yield) was calculated using the more reliable time series of commercial catch data from 2001-2007, which resulted in an estimate of MCY for the kilka fishery of 14100 tonnes.
Resumo:
Cobia is a native fish species in Iranian waters in the Persian Gulf and Sea of Oman and has a good internal and foreign market. This fish is a fast growing species and for this reason Iranian Fisheries is considering to go for it culture practices. To go for any utilization such as fishing from wild stocks or culture activities, needs a better understanding of its peculiarities and genetic characteristics of its natural resources. Therefore, this project was discribed and conducted. In this investigation, cuts 2 or 3 cm of fin tissue of specimen of Cobia obtained from Sistan and Bluchestan, Hormozgan, Bushehr and Khuzestan water provinces, were collected. DNA was extracted by Phenol-chlorophorm method and produced PCR product in length of 1060 and 1450 base pair of two mitochondrial genes COI and NADH2. Using 13 cutting enzymes (4 enzymes were subscriber for both of genes), 205 base pair (from 2510 base pair, equal with %3.8 from gene regains) were directly investigated. But binding patterns of enzymatic digestion of PCR products of both COI and ND genes from electrophoresis were monomorph in all samples and no polymorphism was observed. This may be attributed to the unsuitable choice of COI and ND2 genes for showing of intra specific divergence. But in general non-existence of genetic diversity or noticeable decrease of that among individuals has been reported in regions were fish migration exist and they can freely move between two regions. Therefore, non-observation of polymorphism in the study area might be the case and indicates represents the area. On the other hand, some scientists believe that the distributions of populations in different regions are greatly affected by environmental and physical and ecological factors. Althoug Cobia is a migratory fish, but with regard to the fact that the environmental conditions are different (specially temperature and salinity) between east and west of Persian Gulf and Oman sea, there is a possibility that different genetic groups of this species exist in the regions. Of course It is clear that using more samples and enzymes from other genetically regions could produce better results. Since none of the two investigated genes didn’t show genetic divergence or polymorphism amongst the individuals of one region or between different regions, therefore, statistic analysis for estimating of haplotype diversity or nucleotide diversity and drawing of relationship tree among individuals using available softwares was not possible.
Resumo:
About 3600 specimens were collected by bottom trawl at 15 sampling stations. 24 biometric characters were measured for each specimens at the laboratory.. Microscopic cross – sections of statolith were used for age determination. Sex determination and fecundity were determined. Population dynamics parameters as well as stock as stock assessment including cohort analysis were estimated using FISAT software. The findings showed that Dorsal Mantle Length (DML) and Body weight (BW) of the Indian squid were 133.9 ± 0.78 mm and 99.61 ± 0.95 g respectively. Strong correlation was found between these 2 variables (R2 = 0.90). The maximum age was 5 years. Relationship between DML and age was highly significantly of p ≤ 0.05. Overall sex ratio (M: F = 0.52) was significantly different from the expected 1:1 ratio (p ≤ 0.05). The ovary weight and nidamental glands weight were 7.72 ± 0.0006 g and 3.07 ± 0.0003g respectively. Absolute and relative fecundity of the Indian squid were found to be 122733 ± 30.87 and 2348 ± 0.4 respectively. GSI were 14.35 in April and 8.63 in July. This squid is therefore a spring spawner. The infinite dorsal mantle length were 258.62 mm for females, 194.72 mm for males and 252.02 for both sexes respectively. For population growth and mortality parameters; K (0.65 per year for both sexes, 0.85 per year for males, 0.65 per year for females); t0 (0.24year for both sexes, 0.22 year in females, 0.26 year in male); φ` (2.30 in both sexes, 2.47 for males, 2.37 for females); Z (1.17 per year for both sexes, 1.10 per year in females, 1.39 per year, in males); M (0.70 per year for both sexes, 0.90 for males, 0.67 for females); F(0.27 per year for both sexes, 0.27 per year in males, 0.195 per year in females). Exploitation coefficient were 0.51 per year for both sexes, 0.57 per year males and 0.51 per year females respectively. The results indicates that since the Indian squid is a short live aquatic organism, therefore, the exploitation coefficient could be raised to 0.7 per year. The analysis showed that total biomass and MSY were 10103.5 ton and 2576.4 ton respectively. These findings are the first study of its sort about the Indian squid in the coastal waters of Oman Sea as well as North-West of Indian Ocean.