830 resultados para Magnesium.
Resumo:
Factors that influence alloying zirconium to magnesium with a Mg-33.3Zr master alloy and the subsequent grain refinement are discussed based on a large number of experiments conducted at the laboratory scale (up to 30 kg of melt). It is shown that the zirconium particles released from the Zirmax(R) master alloy must be brought into thorough contact with the melt by an appropriate stirring process in order to attain a good dissolution of zirconium. The influence of alloying temperature on the recovery of zirconium was found to be negligible in the range from 680 to 780 degreesC. An ideal zirconium alloying process should end up with both high soluble and high total zirconium in the melt in order to achieve the best grain refinement in the final alloy. The distribution of zirconium in the final alloy microstructure is inhomogeneous and almost all of the zirconium in solution is concentrated in zirconium-rich cores in the microstructure.
Resumo:
A new zirconium-rich magnesium-zirconium master alloy (designated AM-cast) has been developed by the CRC for Cast Metals Manufacturing in collaboration with Australian Magnesium Corporation for use as a grain refiner for magnesium alloys that do not contain aluminium. This work describes the microstructural characteristics of this new grain refiner and its grain refining ability when added to different magnesium alloys under various conditions (alloying temperature from 680 °C to 750 °C; weight of melt from 1 kg to 150 kg and sample thickness from 7 mm to 62 mm). Owing to its highly alloyable microstructure, AM-cast can be readily introduced into molten magnesium at any temperature when assisted by a few minutes of stirring or puddling. Little sludge has been found at the bottom of the alloying vessel in these trials due to the fine zirconium particles contained in the master alloy. The recovery of zirconium is normally in the range from 40% to 60% with respect to 1% zirconium addition as the master alloy. It is shown that this new master alloy is an excellent grain refiner for aluminium-free magnesium alloys.
Resumo:
Areneselenyl or alkaneselenyl magnesium bromide reacts rapidly with diaryliodonium salt to give the corresponding diaryl or alkyl aryl selenide in the presence of catalytic amounts of Pd-(PPh3)4 in good yield.
Resumo:
In South Gwynedd, Wales, U.K., the calcicole lichen Xanthoria parietina occurs not only on alkaline substrates at inland sites but also on siliceous rock at coastal martimie sites while the calcifuge species Parmelia saxatilis occurs only at inland sites and on slate rocks. Samples of maritime and inland slate did not differ significantly in their calcium or magnesium content. Thalli of X. parietina on pieces of slate did not survive when transplanted from maritime rocks to a site inland. Thalli of maritime X. parietina and P. saxatilis on slate were then transplanted to a site inland and were treated at intervals during 1 year either with calcium carbonate applied as a thick paste or a 0.25 mM solution of calcium chloride. Treatment of X. parietina with calcium carbonate enabled the thalli to survive and grow. However, addition of calcium carbonate to P. saxatilis resulted in low growth rates and fragmentation of the centres of the thalli. The calcium chloride solution had no statistically significant effects on the growth of either species. In addition, thalli of both species were treated with calcium or magnesium carbonates or wetted with an alkaline buffer at intervals over 12-14 months. Thalli of X. parietina survived and grew rapidly when treated with either carbonate but the growth of the buffer-treated thalli gradually declined over the experimental period. Thalli of P. saxatilis fragmented and disappeared after 8-10 months after treatment with either carbonate but normal growth occurred in the buffer treatment. Xanthoria parietina may occur on siliceous maritime rocks at the site because of the presence of calcium or magnesium in sea spray combined with the spray’s alkaline pH. By contrast, P. saxatilis may be confined to siliceous rocks inland because the thalli grow poorly in the presence of calcium and magnesium.