807 resultados para Machine Learning,hepatocellular malignancies,HCC,MVI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent years, kernel methods have revealed very powerful tools in many application domains in general and in remote sensing image classification in particular. The special characteristics of remote sensing images (high dimension, few labeled samples and different noise sources) are efficiently dealt with kernel machines. In this paper, we propose the use of structured output learning to improve remote sensing image classification based on kernels. Structured output learning is concerned with the design of machine learning algorithms that not only implement input-output mapping, but also take into account the relations between output labels, thus generalizing unstructured kernel methods. We analyze the framework and introduce it to the remote sensing community. Output similarity is here encoded into SVM classifiers by modifying the model loss function and the kernel function either independently or jointly. Experiments on a very high resolution (VHR) image classification problem shows promising results and opens a wide field of research with structured output kernel methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroimaging techniques provide valuable tools for diagnosing Alzheimer's disease (AD), monitoring disease progression and evaluating responses to treatment. There is currently a wide array of techniques available including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and, for recording electrical brain activity, electroencephalography (EEG). The choice of technique depends on the contrast between tissues of interest, spatial resolution, temporal resolution, requirements for functional data and the probable number of scans required. For example, while PET, CT and MRI can be used to differentiate between AD and other dementias, MRI is safer and provides better contrast of soft tissues. Neuroimaging is a technique spanning many disciplines and requires effective communication between doctors requesting a scan of a patient or group of patients and those with technical expertise. Consideration and discussion of the most suitable type of scan and the necessary settings to achieve the best results will help ensure appropriate techniques are chosen and used effectively. Neuroimaging techniques are currently expanding understanding of the structural and functional changes that occur in dementia. Further research may allow identification of early neurological signs ofAD, before clinical symptoms are evident, providing the opportunity to test preventative therapies. CombiningMRI and machine learning techniques may be a powerful approach to improve diagnosis ofAD and to predict clinical outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada a la National University of Singapore Singapur, entre juliol i octubre del 2007. Donada l'explosió de la música a l'internet i la ràpida expansió de les col•leccions de música digital, un repte clau en l'àrea de la informació musical és el desenvolupament de sistemes de processament musical eficients i confiables. L'objectiu de la investigació proposada ha estat treballar en diferents aspectes de l'extracció, modelatge i processat del contingut musical. En particular, s’ha treballat en l'extracció, l'anàlisi i la manipulació de descriptors d'àudio de baix nivell, el modelatge de processos musicals, l'estudi i desenvolupament de tècniques d'aprenentatge automàtic per a processar àudio, i la identificació i extracció d'atributs musicals d'alt nivell. S’han revisat i millorat alguns components d'anàlisis d'àudio i revisat components per a l'extracció de descriptors inter-nota i intra-nota en enregistraments monofónics d'àudio. S’ha aplicat treball previ en Tempo a la formalització de diferents tasques musicals. Finalment, s’ha investigat el processat d'alt nivell de música basandonos en el seu contingut. Com exemple d'això, s’ha investigat com músics professionals expressen i comuniquen la seva interpretació del contingut musical i emocional de peces musicals, i hem usat aquesta informació per a identificar automàticament intèrprets. S’han estudiat les desviacions en paràmetres com to, temps, amplitud i timbre a nivell inter-nota i intra-nota.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of two important glucose transporter proteins, GLUT 2 (which is the typical glucose transporter in hepatocytes of adult liver) and the erythroid/brain type glucose transporter GLUT 1 (representing the typical glucose transporter in fetal liver parenchyma), was studied immunocytochemically during hepatocarcinogenesis in rats at different time points between 7 and 65 wk after cessation of 7-wk administration of 12 mg/kg of body weight of N-nitrosomorpholine p.o. (stop model). Foci of altered hepatocytes excessively storing glycogen (GSF) and mixed cell foci (MCF) composed of both glycogenotic and glycogen-poor cells were present at all time points studied. Seven wk after withdrawal of the carcinogen, GSF were the predominant type of focus of altered hepatocytes. Morphometrical evaluation of the focal lesions revealed that the number and volume fraction of GSF increased steadily until Wk 65. MCF were rare at 7 wk, increased slightly in number and size until Wk 37, but showed a pronounced elevation in their number and volume fraction from Wk 37 to Wk 65. In both GSF and MCF, GLUT 2 was generally decreased or partially absent at all time points. Consequently, foci of decreased GLUT 2 expression showed a steady increase in number and volume fraction from Wk 7 to Wk 65. GLUT 1 was lacking in GSF but occurred in some MCF from Wk 50 onward. The liver type glucose transporter GLUT 2 was decreased in all adenomas and hepatocellular carcinomas (HCC). In three of seven adenomas and 10 of 12 carcinomas, expression of GLUT 1 was increased compared with normal liver parenchyma. In two cases of adenoid HCC, cells of ductular formations coexpressed GLUT 2 and GLUT 1. In contrast, normal bile ducts, bile duct proliferations, and cystic cholangiomas expressed only GLUT 1. Seven of 12 HCC contained many microvessels intensely stained for GLUT 1, a phenomenon never observed in normal liver. Whenever adenoid tumor formations occurred, GLUT 1-positive microvessels were located in the immediate vicinity of these formations. Only in one HCC were such microvessels found in the absence of adenoid formations. Our studies indicate that a reduction of GLUT 2 expression occurs already in early preneoplastic hepatic foci and is maintained throughout hepatocarcinogenesis, including benign and malignant neoplasms. Reexpression of GLUT 1, however, appears in a few MCF and in the majority of adenomas and carcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary: Detailed knowledge on tumor antigen expression and specific immune cells is required for a rational design of immunotherapy for patients with tumor invaded liver. In this study, we confirmed that Cancer/Testis (CT) tumor-associated antigens are frequently expressed in hepatocellular carcinoma (HCC) and searched for the presence of CD8+ T cells specific for these antigens. In 2/10 HLA-A2+ patients with HCC, we found that MAGE-A10 and/or SSX-2 specific CD8+ T cells naturally responded to the disease, since they were enriched in tumor lesions but not in non-tumoral liver. Isolated T cells specifically and strongly killed tumor cells in vitro, suggesting that these CTL were selected in vivo for high avidity antigen recognition, providing the rational for specific immunotherapy of HCC, based on immunization with CT antigens such as MAGE-Al 0 and SSX-2. Type 1 NKT cells express an invariant TCR α chain (Vα24.1α18, paired with Vβ11 in human) and share a specific reactivity to αGalactosylceramide (αGC) presented by CD1d. These cells can display paradoxical immuno-regulatory properties including strong anti-tumor effects upon αGC administration in murine models. To understand why NKT cells were not sufficiently protective against tumor development in patients with tumor invaded liver, we characterized the diversity of Vα24/Vβ11 NKT cells in healthy donors (HD) and cancer patients: NKT cells from HD and patients were generally diverse in terms of TCR β chain (Vβ11) variability and NKT cells from HD showed a variable recognition of αGC loaded CD 1 d multimers. Vα24/ Vβ11 NKT cells can be divided in 3 populations, the CD4, DN (CD4-/CD8-) and CD8 NKT cell subsets that show distinct ability of cytokine production. In addition, our functional analysis revealed that DN and CD8 subsets displayed a higher cytolytic potential and a weaker IFNγ release than the CD4 NKT cell subset. NKT cell subsets were variably represented in the blood of HD and cancer patients. However, HD with high NKT cell frequencies displayed an enrichment of the DN and CD8 subsets, and few of them were suggestive of an oligoclonal expansion in vivo. Comparable NKT cell frequencies were found between blood, non-tumoral liver and tumor of patients. In contrast, we identified a gradual enrichment of CD4 NKT cells from blood to the liver and to the tumor, together with a decrease of DN and CD8 NKT cell subsets. Most patient derived NKT cells were unresponsive upon αGalactosylceramide stimulation ex vivo; NKT cells from few patients displayed a weak responsiveness with different cytokine polarization. The NKT cell repertoire was thus different in tumor tissue, suggesting that CD4 NKT cells infiltrating tumors may be detrimental for protection against tumors and instead may favour the tumor growth/recurrence as recently reported in mice. Résumé en français scientifique : Afin de développer le traitement des patients porteurs d'une tumeur dans le foie par immunothérapie, de nouvelles connaissances sont requises concernant l'expression d'antigènes par les tumeurs et les cellules immunitaires spécifiques de ces antigènes. Nous avons vérifié que des antigènes associés aux tumeurs, tels que les antigènes « Cancer-Testis » (CT), sont fréquemment exprimés par le carcinome hepatocéllulaire (CHC). La recherche de lymphocytes T CD8+ spécifiques (CTL) de ces antigènes a révélé que des CTL spécifiques de MAGE-A10 et/ou SSX-2 ont répondu naturellement à la tumeur chez 2/10 patients étudiés. Ces cellules étaient présentes dans les lésions tumorales mais pas dans le foie adjacent. De plus, ces CTL ont démontré une activité cytolytique forte et spécifique contre les cellules tumorales in vitro, ce qui suggère que ces CTL ont été sélectionnés pour une haute avidité de reconnaissance de l'antigène in vivo. Ces données fournissent une base pour l'immunothérapie spécifique du CHC, en proposant de cibler les antigènes CT tels que MAGE-A10 ou SSX-2. Les cellules NKT de type 1 ont une chaîne α de TCR qui est invariante (chez l'homme, Vα24Jα18, apparié avec Vβ11) et reconnaissent spécifiquement l'αGalactosylceramide (αGC) présenté par CD1d. Ces cellules ont des propriétés immuno¬régulatrices qui peuvent être parfois contradictoires et leur activation par l'αGC induit une forte protection anti-tumorale chez la souris: Afin de comprendre pourquoi ces cellules ne sont pas assez protectrices contre le développement des tumeurs dans le foie chez l'homme, nous avons étudié la diversité des cellules NKT Vα24/Vβ11 d'individus sains (IS) et de patients cancéreux. Les cellules NKT peuvent être sous-divisées en 3 populations : Les CD4, DN (CD4- /CD8-) ou CDS, qui ont la capacité de produire des cytokines différentes. Nos analyses fonctionnelles ont aussi révélé que les sous-populations DN et CD8 ont un potentiel cytolytique plus élevé et une production d'IFNγ plus faible que la sous-population CD4. Ces sous-populations sont représentées de manière variable dans le sang des IS ou des patients. Cependant, les IS avec un taux élevé de cellules NKT ont un enrichissement des sous- populations DN ou CDS, et certains suggèrent qu'il s'agit d'une expansion oligo-clonale in vivo. Les patients avaient des fréquences comparables de cellules NKT entre le sang, le foie et la tumeur. Par contre, la sous-population CD4 était progressivement enrichie du sang vers le foie et la tumeur, tandis que les sous-populations DN ou CD8 était perdues. La plupart des cellules NKT des patients ne réagissaient pas lors de stimulation avec l'αGC ex vivo et les cellules NKT de quelques patients répondaient faiblement et avec des polarisations de cytokines différentes. Ces données suggèrent que les cellules NKT CD4, prédominantes dans les tumeurs, sont inefficaces pour la lutte anti-tumorale et pourraient même favoriser la croissance ou la récurrence tumorale. Donc, une mobilisation spécifique des cellules NKT CD4 négatives par immunothérapie pourrait favoriser l'immunité contre des tumeurs chez l'homme. Résumé en français pour un large public Au sein des globules blancs, les lymphocytes T expriment un récepteur (le TCR), qui est propre à chacun d'entre eux et leur permet d'accrocher de manière très spécifique une molécule appelée antigène. Ce TCR est employé par les lymphocytes pour inspecter les antigènes associés avec des molécules présentatrices à la surface des autres cellules. Les lymphocytes T CD8 reconnaissent un fragment de protéine (ou peptide), qui est présenté par une des molécules du Complexe Majeur d'Histocompatibilité de classe I et tuent la cellule qui présente ce peptide. Ils sont ainsi bien adaptés pour éliminer les cellules qui présentent un peptide issu d'un virus quand la cellule est infectée. D'autres cellules T CD8 reconnaissent des peptides comme les antigènes CT, qui sont produits anormalement par les cellules cancéreuses. Nous avons confirmé que les antigènes CT sont fréquemment exprimés par le cancer du foie. Nous avons également identifié des cellules T CD8 spécifiques d'antigènes CT dans la tumeur, mais pas dans le foie normal de 2 patients sur 10. Cela signifie que ces lymphocytes peuvent être naturellement activés contre la tumeur et sont capables de la trouver. De plus les lymphocytes issus d'un patient ont démontré une forte sensibilité pour reconnaître l'antigène et tuent spécifiquement les cellules tumorales. Les antigènes CT représentent donc des cibles intéressantes qui pourront être intégrés dans des vaccins thérapeutiques du cancer du foie. De cette manière, les cellules T CD8 du patient lui-même pourront être induites à détruire de manière spécifique les cellules cancéreuses. Un nouveau type de lymphocytes T a été récemment découvert: les lymphocytes NKT. Quand ils reconnaissent un glycolipide présenté par la molécule CD1d, ils sont capables, de manière encore incomprise, d'initier, d'augmenter, ou à l'inverse d'inhiber la défense immunitaire. Ces cellules NKT ont démontré qu'elles jouent un rôle important dans la défense contre les tumeurs et particulièrement dans le foie des souris. Nous avons étudié les cellules NKT de patients atteints d'une tumeur dans le foie, afin de comprendre pourquoi elles ne sont pas assez protectrice chez l'homme. Les lymphocytes NKT peuvent être sous-divisés en 3 populations: Les CD4, les DN (CD4-/CD8-) et les CD8. Ces 3 classes de NKT peuvent produire différents signaux chimiques appelés cytokines. Contrairement aux cellules NKT DN ou CDS, seules les cellules NKT CD4 sont capables de produire des cytokines qui sont défavorables pour la défense anti-tumorale. Par ailleurs nous avons trouvé que les cellules NKT CD4 tuent moins bien les cellules cancéreuses que les cellules NKT DN ou CD8. L'analyse des cellules NKT, fraîchement extraites du sang, du foie et de la tumeur de patients a révélé que les cellules NKT CD4 sont progressivement enrichies du sang vers le foie et la tumeur. La large prédominance des NKT CD4 à l'intérieur des tumeurs suggère que, chez l'homme, ces cellules sont inappropriées pour la lutte anti-tumorale. Par ailleurs, la plupart des cellules NKT de patients n'étaient pas capables de produire des cytokines après stimulation avec un antigène. Cela explique également pourquoi ces cellules ne protègent pas contre les tumeurs dans le foie.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The automatic diagnostic discrimination is an application of artificial intelligence techniques that can solve clinical cases based on imaging. Diffuse liver diseases are diseases of wide prominence in the population and insidious course, yet early in its progression. Early and effective diagnosis is necessary because many of these diseases progress to cirrhosis and liver cancer. The usual technique of choice for accurate diagnosis is liver biopsy, an invasive and not without incompatibilities one. It is proposed in this project an alternative non-invasive and free of contraindications method based on liver ultrasonography. The images are digitized and then analyzed using statistical techniques and analysis of texture. The results are validated from the pathology report. Finally, we apply artificial intelligence techniques as Fuzzy k-Means or Support Vector Machines and compare its significance to the analysis Statistics and the report of the clinician. The results show that this technique is significantly valid and a promising alternative as a noninvasive diagnostic chronic liver disease from diffuse involvement. Artificial Intelligence classifying techniques significantly improve the diagnosing discrimination compared to other statistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En aquest projecte es presenta l’aplicació per a dispositius mòbils Doppelganger. La seva funció és, a partir d’una fotografia, detectar la cara i mostrar la persona famosa de la nostra base de dades que més s’assembla a la persona en la fotografia. Per la implementació s’han utilitzat algoritmes de visió per computador i d’aprenentatge automàtic com per exemple el PCA i el K-Nearest Neighbor, tot utilitzant llibreries gratuïtes com són les OpenCV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among various advantages, their small size makes model organisms preferred subjects of investigation. Yet, even in model systems detailed analysis of numerous developmental processes at cellular level is severely hampered by their scale. For instance, secondary growth of Arabidopsis hypocotyls creates a radial pattern of highly specialized tissues that comprises several thousand cells starting from a few dozen. This dynamic process is difficult to follow because of its scale and because it can only be investigated invasively, precluding comprehensive understanding of the cell proliferation, differentiation, and patterning events involved. To overcome such limitation, we established an automated quantitative histology approach. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with automated cell type recognition through machine learning, we could establish a cellular resolution atlas that reveals vascular morphodynamics during secondary growth, for example equidistant phloem pole formation. DOI: http://dx.doi.org/10.7554/eLife.01567.001.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. Recent advances in machine learning offer a novel approach to model spatial distribution of petrophysical properties in complex reservoirs alternative to geostatistics. The approach is based of semisupervised learning, which handles both ?labelled? observed data and ?unlabelled? data, which have no measured value but describe prior knowledge and other relevant data in forms of manifolds in the input space where the modelled property is continuous. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic geological features and describe stochastic variability and non-uniqueness of spatial properties. On the other hand, it is able to capture and preserve key spatial dependencies such as connectivity of high permeability geo-bodies, which is often difficult in contemporary petroleum reservoir studies. Semi-supervised SVR as a data driven algorithm is designed to integrate various kind of conditioning information and learn dependences from it. The semi-supervised SVR model is able to balance signal/noise levels and control the prior belief in available data. In this work, stochastic semi-supervised SVR geomodel is integrated into Bayesian framework to quantify uncertainty of reservoir production with multiple models fitted to past dynamic observations (production history). Multiple history matched models are obtained using stochastic sampling and/or MCMC-based inference algorithms, which evaluate posterior probability distribution. Uncertainty of the model is described by posterior probability of the model parameters that represent key geological properties: spatial correlation size, continuity strength, smoothness/variability of spatial property distribution. The developed approach is illustrated with a fluvial reservoir case. The resulting probabilistic production forecasts are described by uncertainty envelopes. The paper compares the performance of the models with different combinations of unknown parameters and discusses sensitivity issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emotions are crucial for user's decision making in recommendation processes. We first introduce ambient recommender systems, which arise from the analysis of new trends on the exploitation of the emotional context in the next generation of recommender systems. We then explain some results of these new trends in real-world applications through the smart prediction assistant (SPA) platform in an intelligent learning guide with more than three million users. While most approaches to recommending have focused on algorithm performance. SPA makes recommendations to users on the basis of emotional information acquired in an incremental way. This article provides a cross-disciplinary perspective to achieve this goal in such recommender systems through a SPA platform. The methodology applied in SPA is the result of a bunch of technology transfer projects for large real-world rccommender systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To compare the apparent diffusion coefficient (ADC) values of malignant liver lesions on diffusion-weighted MRI (DWI) before and after successful radiofrequency ablation (RF ablation). MATERIALS AND METHODS: Thirty-two patients with 43 malignant liver lesions (23/20: metastases/hepatocellular carcinomas (HCC)) underwent liver MRI (3.0T) before (<1month) and after RF ablation (at 1, 3 and 6months) using T2-, gadolinium-enhanced T1- and DWI-weighted MR sequences. Jointly, two radiologists prospectively measured ADCs for each lesion by means of two different regions of interest (ROIs), first including the whole lesion and secondly the area with the visibly most restricted diffusion (MRDA) on ADC map. Changes of ADCs were evaluated with ANOVA and Dunnett tests. RESULTS: Thirty-one patients were successfully treated, while one patient was excluded due to focal recurrence. In metastases (n=22), the ADC in the whole lesion and in MRDA showed an up-and-down evolution. In HCC (n=20), the evolution of ADC was more complex, but with significantly higher values (p=0.013) at 1 and 6months after RF ablation. CONCLUSION: The ADC values of malignant liver lesions successfully treated by RF ablation show a predictable evolution and may help radiologists to monitor tumor response after treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, the joint exploitation of images acquired daily by remote sensing instruments and of images available from archives allows a detailed monitoring of the transitions occurring at the surface of the Earth. These modifications of the land cover generate spectral discrepancies that can be detected via the analysis of remote sensing images. Independently from the origin of the images and of type of surface change, a correct processing of such data implies the adoption of flexible, robust and possibly nonlinear method, to correctly account for the complex statistical relationships characterizing the pixels of the images. This Thesis deals with the development and the application of advanced statistical methods for multi-temporal optical remote sensing image processing tasks. Three different families of machine learning models have been explored and fundamental solutions for change detection problems are provided. In the first part, change detection with user supervision has been considered. In a first application, a nonlinear classifier has been applied with the intent of precisely delineating flooded regions from a pair of images. In a second case study, the spatial context of each pixel has been injected into another nonlinear classifier to obtain a precise mapping of new urban structures. In both cases, the user provides the classifier with examples of what he believes has changed or not. In the second part, a completely automatic and unsupervised method for precise binary detection of changes has been proposed. The technique allows a very accurate mapping without any user intervention, resulting particularly useful when readiness and reaction times of the system are a crucial constraint. In the third, the problem of statistical distributions shifting between acquisitions is studied. Two approaches to transform the couple of bi-temporal images and reduce their differences unrelated to changes in land cover are studied. The methods align the distributions of the images, so that the pixel-wise comparison could be carried out with higher accuracy. Furthermore, the second method can deal with images from different sensors, no matter the dimensionality of the data nor the spectral information content. This opens the doors to possible solutions for a crucial problem in the field: detecting changes when the images have been acquired by two different sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Student guidance is an always desired characteristic in any educational system, butit represents special difficulty if it has to be deployed in an automated way to fulfilsuch needs in a computer supported educational tool. In this paper we explorepossible avenues relying on machine learning techniques, to be included in a nearfuture -in the form of a tutoring navigational tool- in a teleeducation platform -InterMediActor- currently under development. Since no data from that platform isavailable yet, the preliminary experiments presented in this paper are builtinterpreting every subject in the Telecommunications Degree at Universidad CarlosIII de Madrid as an aggregated macro-competence (following the methodologicalconsiderations in InterMediActor), such that marks achieved by students can beused as data for the models, to be replaced in a near future by real data directlymeasured inside InterMediActor. We evaluate the predictability of students qualifications, and we deploy a preventive early detection system -failure alert-, toidentify those students more prone to fail a certain subject such that correctivemeans can be deployed with sufficient anticipation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine learning and pattern recognition methods have been used to diagnose Alzheimer's disease (AD) and mild cognitive impairment (MCI) from individual MRI scans. Another application of such methods is to predict clinical scores from individual scans. Using relevance vector regression (RVR), we predicted individuals' performances on established tests from their MRI T1 weighted image in two independent data sets. From Mayo Clinic, 73 probable AD patients and 91 cognitively normal (CN) controls completed the Mini-Mental State Examination (MMSE), Dementia Rating Scale (DRS), and Auditory Verbal Learning Test (AVLT) within 3months of their scan. Baseline MRI's from the Alzheimer's disease Neuroimaging Initiative (ADNI) comprised the other data set; 113 AD, 351 MCI, and 122 CN subjects completed the MMSE and Alzheimer's Disease Assessment Scale-Cognitive subtest (ADAS-cog) and 39 AD, 92 MCI, and 32 CN ADNI subjects completed MMSE, ADAS-cog, and AVLT. Predicted and actual clinical scores were highly correlated for the MMSE, DRS, and ADAS-cog tests (P<0.0001). Training with one data set and testing with another demonstrated stability between data sets. DRS, MMSE, and ADAS-Cog correlated better than AVLT with whole brain grey matter changes associated with AD. This result underscores their utility for screening and tracking disease. RVR offers a novel way to measure interactions between structural changes and neuropsychological tests beyond that of univariate methods. In clinical practice, we envision using RVR to aid in diagnosis and predict clinical outcome.