919 resultados para MULTI-ELEMENT ANALYSIS
Resumo:
A Finite Element Analysis (FEA) model is used to explore the relationship between clogging and hydraulics that occurs in Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs) in the United Kingdom (UK). Clogging is assumed to be caused by particle transport and an existing single collector efficiency model is implemented to describe this behaviour. The flow model was validated against HSSF TW survey results obtained from the literature. The model successfully simulated the influence of overland flow on hydrodynamics, and the interaction between vertical flow through the low permeability surface layer and the horizontal flow of the saturated water table. The clogging model described the development of clogging within the system but under-predicted the extent of clogging which occurred over 15 years. This is because important clogging mechanisms were not considered by the model, such as biomass growth and vegetation establishment. The model showed the usefulness of FEA for linking hydraulic and clogging phenomenon in HSSF TWs and could be extended to include treatment processes. © 2011 Springer Science+Business Media B.V.
Operant and respondent procedures to establish social stimuli as reinforcers in children with autism
Resumo:
According to the DSM-IV- TR (American Psychiatric Association, 2000), one of the core deficits in autism is in the impairment of social interaction. Some have suggested that underlying these deficits is the reality that individuals with autism do not find social stimuli to be as reinforcing as other types of stimuli (Dawson, 2008). An interesting and growing body of literature supports the notion that symptoms in autism may be caused by a general reduction in social motivation (Chevallier et al., 2012). A review of the literature suggests that social orienting and social motivation are low in individuals with autism, and including social motivation as a target for therapeutic intervention should be pursued (Helt et al., 2008). Through our understanding of learning processes, researchers in behavior analysis and related fields have been able to use conditioning procedures to change the function of neutral or ineffective stimuli, including tokens (Ayllon & Azrin, 1968), facial expressions (Gewirtz & Pelaez-Nogueras, 1992) and praise (Dozier et al., 2012). The current study aimed to use operant and respondent procedures to condition social stimuli that were empirically shown to not be reinforcing prior to conditioning. Further, this study aimed to compare the two procedures in their effectiveness to condition social stimuli to function as reinforcers, and in their maintenance of effects over time. Using a multiple-baseline, multi-element design, one social stimulus was conditioned under each procedure to compare the different response rates following conditioning. Finally, the study sought to determine if conditioning social stimuli to function as reinforcers had any effect on the social functioning of young children with autism. Six children diagnosed with autism between the ages of 18 months and 3 years participated. Results show that the respondent procedure (pairing) resulted in more robust and enduring effects than the operant procedure (Sd procedure). Results of a social communication assessment (ESCS, Mundy et al., 2003) before and after conditioning demonstrate gains in all areas of social communication, particularly in the areas of initiating and responding to joint attention.^
Resumo:
This paper proposes extended nonlinear analytical models, third-order models, of compliant parallelogram mechanisms. These models are capable of capturing the accurate effects from the very large axial force within the transverse motion range of 10% of the beam length through incorporating the terms associated with the high-order (up to third-order) axial force. Firstly, the free-body diagram method is employed to derive the nonlinear analytical model for a basic compliant parallelogram mechanism based on load-displacement relations of a single beam, geometry compatibility conditions, and load-equilibrium conditions. The procedures for the forward solutions and inverse solutions are described. Nonlinear analytical models for guided compliant multi-beam parallelogram mechanisms are then obtained. A case study of the compound compliant parallelogram mechanism, composed of two basic compliant parallelogram mechanisms in symmetry, is further implemented. This work intends to estimate the internal axial force change, the transverse force change, and the transverse stiffness change with the transverse motion using the proposed third-order model in comparison with the first-order model proposed in the prior art. In addition, FEA (finite element analysis) results validate the accuracy of the third-order model for a typical example. It is shown that in the case study the slenderness ratio affects the result discrepancy between the third-order model and the first-order model significantly, and the third-order model can illustrate a non-monotonic transverse stiffness curve if the beam is thin enough.
Resumo:
In combination of the advantages of both parallel mechanisms and compliant mechanisms, a compliant parallel mechanism with two rotational DOFs (degrees of freedom) is designed to meet the requirement of a lightweight and compact pan-tilt platform. Firstly, two commonly-used design methods i.e. direct substitution and FACT (Freedom and Constraint Topology) are applied to design the configuration of the pan-tilt system, and similarities and differences of the two design alternatives are compared. Then inverse kinematic analysis of the candidate mechanism is implemented by using the pseudo-rigid-body model (PRBM), and the Jacobian related to its differential kinematics is further derived to help designer realize dynamic analysis of the 8R compliant mechanism. In addition, the mechanism’s maximum stress existing within its workspace is tested by finite element analysis. Finally, a method to determine joint damping of the flexure hinge is presented, which aims at exploring the effect of joint damping on actuator selection and real-time control. To the authors’ knowledge, almost no existing literature concerns with this issue.
Resumo:
Mineralogical (microprobe) and geochemical (X-ray fluorescence, neutron activation analyses) data are given for 18 samples of volcanic rocks from the Guatemala Trench area (Deep Sea Drilling Project Leg 67). Typical fresh oceanic tholeiites occur in the trench itself (Hole 500) and in its immediate vicinity on the Cocos Plate (Site 495). Several samples (often reworked) of "spilitic" oceanic tholeiites are also described from the Trench: their mineralogy (greenschist facies association - actinolite + plagioclase + chlorite) and geochemistry (alteration, sometimes linked to manganese and zinc mineralization) are shown to result from high-temperature (300°-475°C) hydrothermal sea water-basalt interactions. The samples studied are depleted in light rare-earth elements (LREE), with the exception of the slightly LREE-enriched basalts from Hole 500. The occurrence of such different oceanic tholeiites in the same area is problematic. Volcanic rocks from the Guatemala continental slope (Hole 494A) are described as greenschist facies metabasites (actinolite + epidote + chlorite + plagioclase + calcite + quartz), mineralogically different from the spilites exposed on the Costa Rica coastal range (Nicoya Peninsula). Their primary magmatic affinity is uncertain: clinopyroxene and plagioclase compositions, together with titanium and other hygromagmaphile element contents, support an "active margin" affinity. The LREE-depleted patterns encountered in the present case, however, are not frequently found in orogenic samples but are typical of many oceanic tholeiites.
Resumo:
Injection stretch blow moulding is a well-established method of forming thin-walled containers and has been extensively researched for numerous years. This paper is concerned with validating the finite element analysis of the free-stretch-blow process in an effort to progress the development of injection stretch blow moulding of poly(ethylene terephthalate). Extensive data was obtained experimentally over a wide process window accounting for material temperature and air flow rate, while capturing cavity pressure, stretch-rod reaction force and preform surface strain. This data was then used to assess the accuracy of the correlating FE simulation constructed using ABAQUS/Explicit solver and an appropriate viscoelastic material subroutine. Results reveal that the simulation is able to give good quantitative correlation for conditions where the deformation was predominantly equal biaxial whilst qualitative correlation was achievable when the mode of deformation was predominantly sequential biaxial. Overall the simulation was able to pick up the general trends of how the pressure, reaction force, strain rate and strain vary with the variation in preform temperature and air flow rate. The knowledge gained from these analyses provides insight into the mechanisms of bottle formation, subsequently improving the blow moulding simulation and allowing for reduction in future development costs.
Resumo:
The present work consists of a detailed numerical analysis of a 4-way joint made of a precast column and two partially precast beams. The structure has been previously built and experimentally analyzed through a series of cyclic loads at the Laboratory of Tests on Structures (Laboratorio di Prove su Strutture, La. P. S.) of the University of Bologna. The aim of this work is to design a 3D model of the joint and then apply the techniques of nonlinear finite element analysis (FEA) to computationally reproduce the behavior of the structure under cyclic loads. Once the model has been calibrated to correctly emulate the joint, it is possible to obtain new insights useful to understand and explain the physical phenomena observed in the laboratory and to describe the properties of the structure, such as the cracking patterns, the force-displacement and the moment-curvature relations, as well as the deformations and displacements of the various elements composing the joint.
Resumo:
This dissertation presents work done in the design, modeling, and fabrication of magnetically actuated microrobot legs. Novel fabrication processes for manufacturing multi-material compliant mechanisms have been used to fabricate effective legged robots at both the meso and micro scales, where the meso scale refers to the transition between macro and micro scales. This work discusses the development of a novel mesoscale manufacturing process, Laser Cut Elastomer Refill (LaCER), for prototyping millimeter-scale multi-material compliant mechanisms with elastomer hinges. Additionally discussed is an extension of previous work on the development of a microscale manufacturing process for fabricating micrometer-sale multi-material compliant mechanisms with elastomer hinges, with the added contribution of a method for incorporating magnetic materials for mechanism actuation using externally applied fields. As both of the fabrication processes outlined make significant use of highly compliant elastomer hinges, a fast, accurate modeling method for these hinges was desired for mechanism characterization and design. An analytical model was developed for this purpose, making use of the pseudo rigid-body (PRB) model and extending its utility to hinges with significant stretch component, such as those fabricated from elastomer materials. This model includes 3 springs with stiffnesses relating to material stiffness and hinge geometry, with additional correction factors for aspects particular to common multi-material hinge geometry. This model has been verified against a finite element analysis model (FEA), which in turn was matched to experimental data on mesoscale hinges manufactured using LaCER. These modeling methods have additionally been verified against experimental data from microscale hinges manufactured using the Si/elastomer/magnetics MEMS process. The development of several mechanisms is also discussed: including a mesoscale LaCER-fabricated hexapedal millirobot capable of walking at 2.4 body lengths per second; prototyped mesoscale LaCER-fabricated underactuated legs with asymmetrical features for improved performance; 1 centimeter cubed LaCER-fabricated magnetically-actuated hexapods which use the best-performing underactuated leg design to locomote at up to 10.6 body lengths per second; five microfabricated magnetically actuated single-hinge mechanisms; a 14-hinge, 11-link microfabricated gripper mechanism; a microfabricated robot leg mechansim demonstrated clearing a step height of 100 micrometers; and a 4 mm x 4 mm x 5 mm, 25 mg microfabricated magnetically-actuated hexapod, demonstrated walking at up to 2.25 body lengths per second.
Resumo:
The accurate prediction of stress histories for the fatigue analysis is of utmost importance for the design process of wind turbine rotor blades. As detailed, transient, and geometrically non-linear three-dimensional finite element analyses are computationally weigh too expensive, it is commonly regarded sufficient to calculate the stresses with a geometrically linear analysis and superimpose different stress states in order to obtain the complete stress histories. In order to quantify the error from geometrically linear simulations for the calculation of stress histories and to verify the practical applicability of the superposition principal in fatigue analyses, this paper studies the influence of geometric non-linearity in the example of a trailing edge bond line, as this subcomponent suffers from high strains in span-wise direction. The blade under consideration is that of the IWES IWT-7.5-164 reference wind turbine. From turbine simulations the highest edgewise loading scenario from the fatigue load cases is used as the reference. A 3D finite element model of the blade is created and the bond line fatigue assessment is performed according to the GL certification guidelines in its 2010 edition, and in comparison to the latest DNV GL standard from end of 2015. The results show a significant difference between the geometrically linear and non-linear stress analyses when the bending moments are approximated via a corresponding external loading, especially in case of the 2010 GL certification guidelines. This finding emphasizes the demand to reconsider the application of the superposition principal in fatigue analyses of modern flexible rotor blades, where geometrical nonlinearities become significant. In addition, a new load application methodology is introduced that reduces the geometrically non-linear behaviour of the blade in the finite element analysis.
Resumo:
FEA simulation of thermal metal cutting is central to interactive design and manufacturing. It is therefore relevant to assess the applicability of FEA open software to simulate 2D heat transfer in metal sheet laser cuts. Application of open source code (e.g. FreeFem++, FEniCS, MOOSE) makes possible additional scenarios (e.g. parallel, CUDA, etc.), with lower costs. However, a precise assessment is required on the scenarios in which open software can be a sound alternative to a commercial one. This article contributes in this regard, by presenting a comparison of the aforementioned freeware FEM software for the simulation of heat transfer in thin (i.e. 2D) sheets, subject to a gliding laser point source. We use the commercial ABAQUS software as the reference to compare such open software. A convective linear thin sheet heat transfer model, with and without material removal is used. This article does not intend a full design of computer experiments. Our partial assessment shows that the thin sheet approximation turns to be adequate in terms of the relative error for linear alumina sheets. Under mesh resolutions better than 10e−5 m , the open and reference software temperature differ in at most 1 % of the temperature prediction. Ongoing work includes adaptive re-meshing, nonlinearities, sheet stress analysis and Mach (also called ‘relativistic’) effects.
Operant and Respondent Procedures to Establish Social Stimuli as Reinforcers in Children with Autism
Resumo:
According to the DSM-IV- TR (American Psychiatric Association, 2000), one of the core deficits in autism is in the impairment of social interaction. Some have suggested that underlying these deficits is the reality that individuals with autism do not find social stimuli to be as reinforcing as other types of stimuli (Dawson, 2008). An interesting and growing body of literature supports the notion that symptoms in autism may be caused by a general reduction in social motivation (Chevallier et al., 2012). A review of the literature suggests that social orienting and social motivation are low in individuals with autism, and including social motivation as a target for therapeutic intervention should be pursued (Helt et al., 2008). Through our understanding of learning processes, researchers in behavior analysis and related fields have been able to use conditioning procedures to change the function of neutral or ineffective stimuli, including tokens (Ayllon & Azrin, 1968), facial expressions (Gewirtz & Pelaez-Nogueras, 1992) and praise (Dozier et al., 2012). The current study aimed to use operant and respondent procedures to condition social stimuli that were empirically shown to not be reinforcing prior to conditioning. Further, this study aimed to compare the two procedures in their effectiveness to condition social stimuli to function as reinforcers, and in their maintenance of effects over time. Using a multiple-baseline, multi-element design, one social stimulus was conditioned under each procedure to compare the different response rates following conditioning. Finally, the study sought to determine if conditioning social stimuli to function as reinforcers had any effect on the social functioning of young children with autism. Six children diagnosed with autism between the ages of 18 months and 3 years participated. Results show that the respondent procedure (pairing) resulted in more robust and enduring effects than the operant procedure (Sd procedure). Results of a social communication assessment (ESCS, Mundy et al., 2003) before and after conditioning demonstrate gains in all areas of social communication, particularly in the areas of initiating and responding to joint attention.
Resumo:
The rate of diagnosis and treatment of degenerative spine disorders is increasing, increasing the need for surgical intervention. Posterior spine fusion is one surgical intervention used to treat various spine degeneration pathologies To minimize the risk of complications and provide patients with positive outcomes, preoperative planning and postsurgical assessment are necessary. This PhD aimed to investigate techniques for the surgical planning and assessment of spine surgeries. Three main techniques were assessed: stereophotogrammetric motion analysis, 3D printing of complex spine deformities and finite element analysis of the thoracolumbar spine. Upon reviewing the literature on currently available spine kinematics protocol, a comprehensive motion analysis protocol to measure the multi-segmental spine motion was developed. Using this protocol, the patterns of spine motion in patients before and after posterior spine fixation was mapped. The second part investigated the use of virtual and 3D printed spine models for the surgical planning of complex spine deformity correction. Compared to usual radiographic images, the printed model allowed optimal surgical intervention, reduced surgical time and provided better surgeon-patient communication. The third part assessed the use of polyetheretherketone rods auxiliary to titanium rods to reduce the stiffness of posterior spine fusion constructs. Using a finite element model of the thoracolumbar spine, the rods system showed a decrease in the overall stress of the uppermost instrumented vertebra when compared to regular fixation approaches. Finally, a retrospective biomechanical assessment of a lumbopelvic reconstruction technique was investigated to assess the patients' gait following the surgery, the implant deformation over the years and the extent of bony fusion between spine and implant. In conclusion, this thesis highlighted the need to provide surgeons with new planning and assessment techniques to better understand postsurgical complications. The methodologies investigated in this project can be used in the future to establish a patient-specific planning protocol.