837 resultados para MTX toxin
Resumo:
The fate of Bacillus sphaericus spores in the aquatic environment was investigated by suspending spores in dialysis bags in fresh and seawater. Spore viability was lost more rapidly in seawater. Neither B. sphaericus nor B. thuringiensis israelensis (B.t.i.) spores mixed with pond sediment appeared to attach to the sediment. However, rapid decrease in B.t.i. toxicity suggested attachment of parasporal bodies to sediment. B. sphaericus toxin settled more slowly and less completely. B. sphaericus spores fed to larvae of four aquatic invertebrates were mostly eliminated from the animal gut in less than one week. An exception was the cranefly (Tipula abdominalis) where spores persisted in the posterior gut for up to five weeks.
Resumo:
OBJECTIVEEvaluate whether healthy or diabetic adult mice can tolerate an extreme loss of pancreatic α-cells and how this sudden massive depletion affects β-cell function and blood glucose homeostasis.RESEARCH DESIGN AND METHODSWe generated a new transgenic model allowing near-total α-cell removal specifically in adult mice. Massive α-cell ablation was triggered in normally grown and healthy adult animals upon diphtheria toxin (DT) administration. The metabolic status of these mice was assessed in 1) physiologic conditions, 2) a situation requiring glucagon action, and 3) after β-cell loss.RESULTSAdult transgenic mice enduring extreme (98%) α-cell removal remained healthy and did not display major defects in insulin counter-regulatory response. We observed that 2% of the normal α-cell mass produced enough glucagon to ensure near-normal glucagonemia. β-Cell function and blood glucose homeostasis remained unaltered after α-cell loss, indicating that direct local intraislet signaling between α- and β-cells is dispensable. Escaping α-cells increased their glucagon content during subsequent months, but there was no significant α-cell regeneration. Near-total α-cell ablation did not prevent hyperglycemia in mice having also undergone massive β-cell loss, indicating that a minimal amount of α-cells can still guarantee normal glucagon signaling in diabetic conditions.CONCLUSIONSAn extremely low amount of α-cells is sufficient to prevent a major counter-regulatory deregulation, both under physiologic and diabetic conditions. We previously reported that α-cells reprogram to insulin production after extreme β-cell loss and now conjecture that the low α-cell requirement could be exploited in future diabetic therapies aimed at regenerating β-cells by reprogramming adult α-cells.
Resumo:
CHO is the most commonly used mammalian host for the generation of cell lines allowing for the production of high quality therapeutic proteins. The generation of such cell lines is a lengthy and resource-intensive process requiring extensive screening in order to isolate candidates with optimal characteristics, such as growth, stability and productivity. For this reason, the biotechnology industry invests much effort in attempts to optimize CHO expression systems in order to streamline and shorten the cell line selection process. Based on preliminary observations of a facilitated selection of CHO-GS cell lines expressing members of the IL-17 cytokine family, this study investigates the use of IL-17F as a novel enhancing factor for CHO cell line generation. Using two different CHO expression systems (exploiting GS and DHFR-based selection), we demonstrated that IL-17F expression caused a significant increase in the occurrence of colonies during the selection process. All colonies selected produced substantial amounts of IL-17F, suggesting that benefits were conferred, during selection, to those cells expressing the cytokine. Furthermore, transgene expression levels were significantly increased when the selection pressure was raised to a level that would not normally be permissive for colony selection (i.e. 100 |o.M MSX for the CHO-GS expression system or 1000 nM MTX for the CHO-DHFR system). Finally, IL-17F expression was also found to enhance the rate of appearance of clones during single cell subcloning in the absence of selection pressure. Overall, these benefits have the potential to allow a substantial reduction in the length of cell line generation while significantly increasing cell line productivity. Nevertheless, we found that the high IL-17F expression levels required to convey enhancing effects was a limitation when attempting to co-express IL-17F and a recombinant soluble protein of therapeutic interest from independent CMV promoters within the same expression vector. In order to understand and overcome this limitation, studies were designed to characterize the IL-17F enhancing effect at the molecular and cellular level. Regular supplementation of recombinant biologically-active IL-17F into the culture medium during cell line selection was not able to reproduce the enhancing effects of endogenous IL-17F expression. In addition, increased IL-17F expression correlated with increased CHO-GS selection transgene expression at the single cell level. This data suggested a possible effect of IL-17F on viral promoter activity or transgene mRNA stability. It also provided direct evidence that the cells expressing the highest amounts of IL-17F obtained the most benefit. Overall data obtained from these study implied that IL-17F may act through an intracellular mechanism, possibly exerted during secretion. We therefore initiated experiments designed to determine the specific compartment(s) within which IL-17F triggers its effect. This work has identified IL-17F as a potentially powerful tool to optimize the CHO cell line generation process. The characterization of this enhancing effect at the molecular level has given us several insights into overcoming the current limitations, thus paving the way for the development of a viable technology that can be exploited within the biotechnology industry. - La CHO est la cellule hôte de mammifere la plus couramment utilisée dans la création de lignée cellulaire produisant des protéines thérapeutiques de haute qualité. La génération de ces lignées cellulaires est un processus long et exigeant l'utilisation de techniques de sélection robustes afin d'isoler des candidats possédants les caractéristiques optimales de croissance, de productivité et de stabilité d'expression. Les industries biopharmaceutiques ont investi beaucoup d'efforts afin d'optimiser les systèmes d'expression CHO dans le but raccourcir la longueur du procédé de sélection de lignées cellulaires et aussi d'en augmenter l'efficacité. A partir d'observations préliminaires obtenues lors de la génération de lignées cellulaires CHO- GS exprimant une cytokine appartenant à la famille des IL-17, nous avons réalisé une étude portant sur l'utilisation de l'IL-17F humaine (IL-17F) comme nouveau facteur d'optimisation pour la génération de lignées cellulaires CHO. Nous avons démontré, en utilisant les deux systèmes de sélection et d'expression CHO couramment utilisés (le premier exploitant la GS et l'autre basée sur la DHFR), que l'expression de l'IL-17F permet une augmentation significative de la fréquence d'apparition de colonies durant le processus de sélection de lignées cellulaires. Les différentes colonies sélectionnées expriment des quantités substantielles d'IL-17F, suggérant un effet bénéfique lors de la sélection qui serait exclusivement conféré aux cellules exprimant la cytokine. En outre, le niveau d'expression du transgene se trouve significativement augmenté lorsque la pression de sélection est portée à un niveau habituellement trop élevé pour permettre la sélection de colonies (soit 100 |JM MSX pour le système d'expression CHO-GS ou 1000 nM MTX pour le système CHO- DHFR). Enfin, l'expression d'IL-17F permet également d'améliorer la vitesse d'apparition de clones pendant une étape de sous-clonage en l'absence de pression de sélection. L'ensemble de ces effets bénéfiques permettent une réduction substantielle de la durée de génération de lignées cellulaires tout en augmentant considérablement la productivité des lignées obtenues. Néanmoins, nous avons constaté que la nécessité d'exprimer des niveaux élevés d'IL-17F afin obtenir l'ensemble de ses effets bénéfiques devient une contrainte lors de l'utilisation d'un vecteur d'expression composé de deux promoteurs CMV indépendants pour la co-expression de la cytokine et d'une protéine soluble présentant un intérêt thérapeutique. Afin de mieux comprendre et de surmonter cette limitation, plusieurs études ont été effectuées dans le but de mieux caractériser l'effet de IL-17F au niveau subcellulaire. L'apport régulier en IL-17F recombinante et biologiquement active dans le milieu de culture lors de la sélection de lignées cellulaires ne permet pas de reproduire les effets bénéfiques observés par l'expression endogène d'IL-17F. En outre, nous avons constaté que, lors de l'utilisation du système CHO- GS, l'augmentation d'expression de 1TL-17F est corrélée à un accroissement de l'expression du marqueur de sélection au niveau cellulaire. Ces résultats suggèrent un possible effet d'IL- 17F sur l'activité des promoteurs viraux et ainsi fournissent une preuve directe que les cellules exprimant de haut niveau d'IL-17F sont celles qui en profitent le plus. L'ensemble de ces observations mettrait en avant que l'effet d'IL-17F se ferait selon un mécanisme intracellulaire. Nous avons donc étudié le(s) compartiment(s) spécifique(s) dans lequel IL-17F pourrait exercer son effet. Ce travail a permis de définir IL-17F comme un puissant outil pour l'optimisation des procédés de génération de lignées cellulaires CHO. La caractérisation de cette amélioration de l'effet au niveau moléculaire nous a donné plusieurs indications sur la manière de dépasser les limitations actuelles, ouvrant ainsi la voie au développement d'une technologie viable qui peut être exploitée pars l'industrie biotechnologique.
Resumo:
The systemic treatment of kidney cancers is promising regarding the first results of the inhibiting molecules of the angiogenesis. Projections in research are encouraging for more specific and sensitive markers of the prostate cancer. For this last the intermittent hormonotherapy improves the quality of life of the patients. The overweight control in infertility allows greater chances of giving birth. The morbidity of the kidney percutaneous surgery is decreased by the use of smaller tools. Reduction rate of reobstruction thanks to new manufactoring stents. The botulinic toxin for the hyperactive bladder refunded by the health insurances.
Resumo:
The pathogenic O1 Amazonia variant of Vibrio cholerae has been shown previously to have a cytotoxin acting on cultured Vero and Y-1 cells, and to lack important virulence factors such as the cholera toxin (Coelho et al. 1995a). This study extends the molecular analysis of the Amazonia strains, detecting the presence of the toxR gene, with a very similar sequence to that of the El Tor and classical biotypes. The outer membrane proteins are analyzed, detecting a variation among the group of Amazonia strains, with three different patterns found. As a by-product of this work a polymerase chain reaction fragment was sequenced, reading part of the sequence of the Lon protease of the Amazonia strains. This gene was not previously described in V. cholerae, but its sequence is present in the TIGR database specific for this species.
Resumo:
Astrocytes are the brain nonnerve cells that are competent for gliosecretion, i.e., for expression and regulated exocytosis of clear and dense-core vesicles (DCVs). We investigated whether expression of astrocyte DCVs is governed by RE-1-silencing transcription factor (REST)/neuron-restrictive silencer factor, the transcription repressor that orchestrates nerve cell differentiation. Rat astrocyte cultures exhibited high levels of REST and expressed neither DCVs nor their markers (granins, peptides, and membrane proteins). Transfection of dominant-negative construct of REST induced the appearance of DCVs filled with secretogranin 2 and neuropeptide Y (NPY) and distinct from other organelles. Total internal reflection fluorescence analysis revealed NPY-monomeric red fluorescent protein-labeled DCVs to undergo Ca21 -dependent exocytosis, which was largely prevented by botulinum toxin B. In the I-II layers of the human temporal brain cortex, all neurons and microglia exhibited the expected inappreciable and high levels of REST, respectively. In contrast, astrocyte RESTwas variable, going from inappreciable to high, and accompanied by a variable expression of DCVs. In conclusion, astrocyte DCV expression and gliosecretion are governed by REST. The variable in situ REST levels may contribute to the wellknown structural/ functional heterogeneity of astrocytes.
Resumo:
Skin diseases may have severe aesthetic and psychological repercussions leading sometimes to discriminations and social isolation. Dermatologists have contributed to the development of many cosmetic procedures: peelings, botulinum toxin or hyaluronic acid injections, lasers, blepharoplasty, facelift, etc. Many of these treatments have interesting clinical applications and may help numerous patients with skin diseases to return to a normal social life.
Resumo:
We report the case of a drug interaction between methotrexate (MTX) and chloral hydrate (CH) observed in a child treated for acute leukemia. Significantly slower MTX clearance and increased MTX exposure occurred on the first three courses of a high-dose chemotherapy when co-administered with CH despite normal renal function, adequate hydration, and alkalinization. Mean MTX area under the curve associated with CH administration was 1,134 µmol hours/L, compared to 608 µmol hours/L after discontinuation of CH. This interaction possibly resulted from a competition between anionic CH metabolites and MTX for renal tubular excretion.
Resumo:
Bacteria active against dipteran larvae (mosquitoes and black flies) include a wide variety of Bacillus thuringiensis and B. sphaericus strains, as well as isolates of Brevibacillus laterosporus and Clostridium bifermentans. All display different spectra and levels of activity correlated with the nature of the toxins, mainly produced during the sporulation process. This paper describes the structure and mode of action of the main mosquitocidal toxins, in relationship with their potential use in mosquito and/or black fly larvae control. Investigations with laboratory and field colonies of mosquitoes that have become highly resistant to the B. sphaericus Bin toxin have shown that several mechanisms of resistance are involved, some affecting the toxin/receptor binding step, others unknown.
Resumo:
The use of the latex of Euphorbia splendens var. hislopii was considered as an effective control method for Biomphalaria glabrata in Sumidouro, Rio de Janeiro. However, the appearance and expansion of the snail Melanoides tuberculata since August 1997, with the concomitant reduction of the population of B. glabrata suggest that competitive exclusion might be taking place. Depending on the susceptibility of the thiarid to the E. splendens toxin, the natural control that is occurring could be interrupted by the employment of the latex if the planorbid were less susceptible to the toxin. The aim of this study is to investigate the molluscicidal activity of the latex on M. tuberculata. We used 420 M. tuberculata, from Sumidouro. Fourteen different latex concentrations were tested using World Health Organization general methodology. Probit analysis was used for LD90 and LD50 determination. The LD50 was 3.57 mg/l and LD90 was 6.22 mg/l. At the highest concentration (10 mg/l) there was no survival. No significant differences among replicas (chi2 = 8.31; gl = 13; p > 0.05) were found. The LD90 dose for M. tuberculata was 13.8 times greater than that for B. glabrata, so that the molluscicide in the presence of the thiarid may have a synergic effect on reduction of Biomphalaria populations.
Resumo:
Aeromonas hydrophila is a Gram-negative pathogen that causes serious infectious disease in humans. A. hydrophila induces apoptosis in infected macrophages, but the host proinflammatory responses triggered by macrophage death are largely unknown. Here, we demonstrate that the infection of mouse macrophages with A. hydrophila triggers the activation of caspase-1 and release of IL-1β. Caspase-1 activation was abrogated in macrophages deficient in Nod-like receptor family, pyrin domain containing 3 (NLRP3) and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), but not NLR family, CARD domain containing 4 (NLRC4). The activation of the NLRP3 inflammasome was mediated by three cytotoxins (aerolysin, hemolysin and multifunctional repeat-in-toxin) produced by A. hydrophila. Our results indicated that the NLRP3 inflammasome senses A. hydrophila infection through the action of bacterial cytotoxins.
Resumo:
In this work we studied the toxicity in clams from the Gulf of Gabes, Tunisia (Southern Mediterranean). Samples from two stations (M2 and S6) were collected monthly from January 2009 to September 2010, and analyzed by the official control method of mousse bioassay (MBA) for lipophilic toxins. All samples were also analyzed with the LC-MS/MS method for the determination of lipophilic toxins, namely: okadaic acid group, pectenotoxins, yessotoxins and azaspiracids, spirolides and gymnodimines (GYMs). The results showed prevalence of GYMs since it was the only toxin group identified in these samples with a maximum of 2,136 μg GYM -A kg-1 (February 2009 at M2). Furthermore, GYMs showed persistence in the area, with only one blank sample below the limit of detection. Interestingly, this blank sample was found in June 2009 after an important toxic episode which supports the recent findings regarding the high detoxification capability of clams, much faster than that reported for oysters. In comparison, good agreement was found among MBA, the LD50 value of 80-100 μg kg-1 reported for GYM- A, and quantitative results provided by LC-MS/MS. On the contrary to that previously reported for Tunisian clams, we unambiguously identified and quantified by LC-MS/MS the isomers GYM- B/C in most samples. Phytoplankton identification and enumeration of Karenia selliformis usually showed higher densities at site M2 than S6 as expected bearing in mind toxin results, although additional results would be required to improve the correlation between K. selliformis densities and quantitative results of toxins. The prevalence and persistence of GYMs in this area at high levels strongly encourages the evaluation of the chronic toxic effects of GYMs. This is especially important taking into account that relatively large quantities of GYMs can be released into the market due to the replacement of the official control method from mouse bioassay to the LC-MS/MS for lipophilic toxins (Regulation (EU) No 15/2011), and the lack of Regulation for this group of toxins.
Resumo:
Changes in the epidemiology of diphtheria are occurring worldwide. A large proportion of adults in many industrialized and developing countries are now susceptible to diphtheria. Vaccine-induced immunity wanes over time unless periodic booster is given or exposure to toxigenic Corynebacterium diphtheriae occurs. Immunity gap in adults coupled with large numbers of susceptible children creates the potential for new extensive epidemics. Epidemic emergencies may not be long in coming in countries experiencing rapid industrialization or undergoing sociopolitical instability where many of the factors thought to be important in producing epidemic such as mass population movements and difficult hygienic and economic conditions are present. The continuous circulation of toxigenic C. diphtheriae emphasizes the need to be aware of epidemiological features, clinical signs, and symptoms of diphtheria in vaccine era so that cases can be promptly diagnosed and treated, and further public health measures can be taken to contain this serious disease. This overview focused on worldwide data obtained from diphtheria with particular emphasis to main factors leading to recent epidemics, new clinical forms of C. diphtheriae infections, expression of virulence factors, other than toxin production, control strategies, and laboratory diagnosis procedures.
Resumo:
Voltage-gated Na(+) channels (NaV channels) are specifically blocked by guanidinium toxins such as tetrodotoxin (TTX) and saxitoxin (STX) with nanomolar to micromolar affinity depending on key amino acid substitutions in the outer vestibule of the channel that vary with NaV gene isoforms. All NaV channels that have been studied exhibit a use-dependent enhancement of TTX/STX affinity when the channel is stimulated with brief repetitive voltage depolarizations from a hyperpolarized starting voltage. Two models have been proposed to explain the mechanism of TTX/STX use dependence: a conformational mechanism and a trapped ion mechanism. In this study, we used selectivity filter mutations (K1237R, K1237A, and K1237H) of the rat muscle NaV1.4 channel that are known to alter ionic selectivity and Ca(2+) permeability to test the trapped ion mechanism, which attributes use-dependent enhancement of toxin affinity to electrostatic repulsion between the bound toxin and Ca(2+) or Na(+) ions trapped inside the channel vestibule in the closed state. Our results indicate that TTX/STX use dependence is not relieved by mutations that enhance Ca(2+) permeability, suggesting that ion-toxin repulsion is not the primary factor that determines use dependence. Evidence now favors the idea that TTX/STX use dependence arises from conformational coupling of the voltage sensor domain or domains with residues in the toxin-binding site that are also involved in slow inactivation.