998 resultados para MOLECULAR VARIANTS
Characterization of C2S4.+ isomers by mass spectrometry and ab initio molecular orbital calculations
Resumo:
We describe the genomic organization of a recently identified CC chemokine, MIP3 alpha /CCL20 (HGMW-approved symbol SCYA20). The MIP-3 alpha /CCL20 gene was cloned and sequenced, revealing a four exon, three intron structure, and was localized by FISK analysis to 2q35-q36. Two distinct cDNAs were identified, encoding two forms of MIP-3 alpha /CCL20, Ala MLP-3 alpha /CCL20 and Ser MIP-3 alpha /CCL20, that differ by one amino acid at the predicted signal peptide cleavage site. Examination of the sequence around the boundary of intron 1 and exon 2 showed that use of alternative splice acceptor sites could give rise to Ata MIP-3 alpha /CCL20 or Ser MIP-3 alpha /CCL20. Both forms of MIP-3cr/CCL20 were chemically synthesized and tested for biological activity. Both flu antigen plus IL-a-activated CD4(+) and CD8(+) T lymphoblasts and cord blood-derived dendritic cells responded to Ser and Ala MIP-3 alpha /CCL20. T lymphocytes exposed only to IL-2 responded inconsistently, while no response was detected in naive T lymphocytes, monocytes, or neutrophils. The biological activity of Ser MIP-3 alpha /CCL20 and Ala MIP-3 alpha /CCL20 and the tissue-specific preference of different splice acceptor sites are not yet known. (C) 2001 Academic Press.
Resumo:
An improved differential display technique was used to search for changes in gene expression in the superior frontal cortex of alcoholics, A cDNA fragment was retrieved and cloned. Further sequence of the cDNA was determined from 5' RACE and screening of a human brain cDNA library. The gene was named hNP22 (human neuronal protein 22). The deduced protein sequence of hNP22 has an estimated molecular mass of 22.4 kDa with a putative calcium-binding site, and phosphorylation sites for casein kinase II and protein kinase C. The deduced amino acid sequence of hNP22 shares homology (from 67% to 42%) with four other proteins, SM22 alpha, calponin, myophilin and mp20. Sequence homology suggests a potential interaction of hNP22 with cytoskeletal elements. hNP22 mRNA was expressed in various brain regions but in alcoholics, greater mRNA expression occurred in the superior frontal cortex, but not in the primary motor cortex or cerebellum. The results suggest that hNP22 may have a role in alcohol-related adaptations and may mediate regulatory signal transduction pathways in neurones.
Resumo:
We analyzed the expression profile of two NMDAR1 mRNA isoform subsets. NR1(0xx) and NR1(1xx), in discrete regions of human cerebral cortex. The subsets are characterized by the absence or presence of a 21-amino acid N-terminal cassette. Reverse transcription polymerase chain reaction for NR1 isoforms was performed on total RNA preparations from spared and susceptible regions from 10 pathologically confirmed Alzheimer's disease (AD) cases and 10 matched controls. Primers spanning the splice insert yielded two bands, 342 bp (NR1(0xx)) and 405 bp (NR1(1xx)), on agarose gel electrophoresis. The bands were visualized with ethidium and quantified by densitometry. NR1(1xx) transcript expression was calculated as a proportion of the NR1(1xx) + NR1(0xx) total. Values were significantly lower in AD cases than in controls in mid-cingulate cortex, p < 0.01, superior temporal cortex, p < 0.01 and hippocampus, p similar to 0.05. Cortical proportionate NR1(1xx) transcript expression was invariant over the range of ages acid areas of controls tested, at similar to 50%. This was also true for AD motor and occipital cortex. Proportionate NR1(1xx) expression in AD cingulate and temporal cortex was lower at younger ages and increased with age: this regression was significantly different from that in the homotropic areas of controls. Variations in NR1 N-terminal cassette expression may underlie the local vulnerability to excitotoxic damage of some areas in the AD brain. Alternatively, changes in NR1 mRNA expression may arise as a consequence of the AD disease process.
Resumo:
(E)-N-Hexadecyl-4-[2-(4-octadecyloxynaphthyl) ethenyl] quinolinium bromide, which has a wide-bodied chromophore and terminal n-alkyl groups, adopts a U-shape when spread at the air-water interface but a stretched conformation when compressed to ca. 35 mN m(-1). The high-pressure phase has a narrow stability range prior to collapse but may be extended from 40 to 60 mN m(-1) by co-spreading the dye in a 1 : 1 ratio with docosanoic acid. The mixed Langmuir-Blodgett (LB) film has a monolayer thickness of 4.6 +/- 0.2 nm which decreases to 2.5 +/- 0.1 nm layer(-1) in the bulk, the reduction arising from an interdigitating layer arrangement, both top and bottom. It is the first example of LB-Lego(R) and, in addition, represents the only fully interdigitating structure with non-centrosymmetrically aligned chromophores. They are tilted 38 degrees from the substrate normal. The second-harmonic intensity increases quadratically with the number of layers, i.e. as I-(N)(2 omega) = (I(1)N2)-N-2 omega, with a second-order susceptibility of chi ((2))(zzz) = 30 pm V-1 at 1064 nm for refractive indices of n(omega) = 1.55 and n(2 omega) = 1.73, d = 2.5 nm layer(-1) and phi = 38 degrees. Angle resolved X-ray photoelectron spectra (XPS) of these films provide no evidence of the bromide counterion, which suggests that it is replaced by OH 2 or HCO3-, which occur naturally in the aqueous subphase, or C21H43COO- from the co-deposited fatty acid. This probably applies to all cationic dyes deposited by the LB technique.
Resumo:
The aim of this study was to determine the mechanism by which the aged garlic extract Kyolic has a protective effect against atherosclerosis. Plasma cholesterol of rabbits fed a 1% cholesterol-enriched diet for 6 wk was not reduced by supplementation with 800 muL Kyolic/(kg body . d). In spite of this, Kyolic reduced by 64% (P < 0.05) the surface area of the thoracic aorta covered by fatty streaks and significantly reduced aortic arch cholesterol. Kyolic also significantly inhibited by 50% the development of thickened, lipid-filled lesions in preformed neointimas produced by Fogarty 2F balloon catheter injury of the right carotid artery in cholesterol-fed rabbits. In vitro studies found that Kyolic completely prevented vascular smooth muscle phenotypic change from the contractile. high volume fraction of filament (V(v)myo) state, and inhibited proliferation of smooth muscle cells in the synthetic state with a 50% effective dose (ED50) of 0.2%. Kyolic also slightly inhibited the accumulation of lipid in cultured macrophages but not smooth muscle, and had no effect an the expression of adhesion molecules on the surface of the endothelium or the adherence of leukocytes. It is concluded that Kyolic exerts antiatherogenic effects through inhibition of smooth muscle phenotypic change and proliferation, and by another (unclarified) effect on lipid accumulation in the artery wall.
Resumo:
SFTI-1 is a recently discovered cyclic peptide trypsin inhibitor from sunflower seeds comprising 14 amino acid residues. It is the most potent known Bowman-Birk inhibitor and the only naturally occurring cyclic one. The solution structure of SFTI-1 has been determined by H-1-NMR spectroscopy and compared with a synthetic acyclic permutant. The solution structures of both are remarkably similar. The lowest energy structures from each family of 20 structures of cyclic and acyclic SFTI-1 have an rmsd over the backbone and heavy atoms of 0.29 Angstrom and 0.66 Angstrom, respectively. The structures consist of two short antiparallel beta -strands joined by an extended loop containing the active site at one end. Cyclic SFTI-1 also has a hairpin turn completing the cycle. Both molecules contain particularly stable arrangements of cross-linking hydrogen bonds between the beta -strands and a single disulfide bridge, making them rigid and well defined in solution. These stable arrangements allow both the cyclic and acyclic variants of SFTI-1 to inhibit trypsin with very high potencies (0.5 nM and 12.1 nM, respectively). The cyclic nature of SFTI-1 appears to have evolved to provide higher trypsin inhibition as well as higher stability. The solution structures are similar to the crystal structure of the cyclic inhibitor in complex with trypsin. The lack of a major conformational change upon binding suggests that the structure of SFTI-1 is rigid and already pre-organized for maximal binding due to minimization of entropic losses compared to a more flexible ligand. These properties make SFTI-1 an ideal platform for the design of small peptidic pharmaceuticals or pesticides. (C) 2001 Academic Press.
Resumo:
The discovery of periodic mesoporous MCM-41 and related molecular sieves has attracted significant attention from a fundamental as well as applied perspective. They possess well-defined cylindrical/hexagonal mesopores with a simple geometry, tailored pore size, and reproducible surface properties. Hence, there is an ever-growing scientific interest in the challenges posed by their processing and characterization and by the refinement of various sorption models. Further, MCM-41-based materials are currently under intense investigation with respect to their utility as adsorbents, catalysts, supports, ion-exchangers, and molecular hosts. In this article, we provide a critical review of the developments in these areas with particular emphasis on adsorption characteristics, progress in controlling the pore sizes, and a comparison of pore size distributions using traditional and newer models. The model proposed by the authors for adsorption isotherms and criticalities in capillary condensation and hysteresis is found to explain unusual adsorption behavior in these materials while providing a convenient characterization tool.
Resumo:
The complete sequence of the MCIR locus has been assembled, the coding region of the gene is intronless and placed within a 12 kb region flanked by the NULP1 and TUBB4 genes. The immediate promoter region has an E-box site with homology to the M-box consensus known to bind the microphthalmia transcription factor (MITF), however, promoter deletion analysis and transactivation studies have failed to show activation through this element by MITF. Polymorphism within the coding region, immediate 5' promoter region and a variable number tandem repeat (VNTR) minisatellite within the locus have been examined in a collection of Caucasian families and African individuals. Haplotype analysis shows linkage disequilibrium between the VNTR and MCIR coding region red hair variant alleles which can be used to estimate the age of these missense changes. Assuming a mean VNTR mutation rate of 1% and a star phylogeny, we estimate the Arg151Cys variant arose 7500 years before the present day, suggesting these variants may have arisen in the Caucasian population more recently than previously thought. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Mesoporous Ti-substituted aluminophosphates (AlPOs) with a hexagonal, cubic and lamellar pore structure, characteristic of MCM-41, MCM-48, and MCM-50, respectively, were synthesized. The stability of these mesophases upon template removal was studied. The pore structures, surface properties, and local atom environments of Al, P, and Ti of the hexagonal and cubic Ti-containing mesoporous products were extensively characterized using X-ray diffraction, magic angle spinning nuclear magnetic resonance, AAS, XPS, ultraviolet–visible, and adsorption of nitrogen and water vapor techniques while the lamellar mesophase was not further characterized due to its very poor thermal stability. Ti-containing mesoporous AlPO materials show a reasonable thermal stability upon template removal, a hydrophilic surface property, and high porosity showing application potentials in catalytic oxidation of hydrocarbons.
Resumo:
Cobalamins are stored in high concentrations in the human liver and thus are available to participate in the regulation of hepatotropic virus functions. We show that cyanocobalamin (vitamin B12) inhibited the H(IV internal ribosome entry site (IRES)-dependent translation of a reporter gene in vitro in a dose-dependent manner without significantly affecting the cap-dependent mechanism. Vitamin B12 failed to inhibit translation by IRES elements from encephalomyocarditis virus (EMCV) or classical swine fever virus (CSFV), We also demonstrate a relationship between the total cobalamin concentration in human sera and HCV viral load (a measure of viral replication in the host), The mean viral load was two orders of magnitude greater when the serum cobalamin concentration was above 200 pM (P < 0.003), suggesting that the total cobalamin concentration in an HCV-infected liver is biologically significant in HCV replication.
Resumo:
Silica xerogels were prepared by a sol-gel process catalyzed by acid with tetraethylorthosilicate, and using an organic covalent ligand template (methyltriethoxysilane) or a noncovalent template C6 surfactant (triethylhexylammonium bromide). The influence of hydrotreatment on the structure of templated xerogels is examined in terms of surface area, micropore volume, average pore size, and pore size distribution, and compared against a blank xerogel (nontemplated). The role of surface functional groups was evaluated using Si-29 nuclear magnetic resonance. The structural integrity of the xerogel was maintained to a large extent in samples that had a high contribution of Q(4) species (siloxane groups). Xerogel matrix densification occurred when there was a large concentration of Q(3) and Q(2) species (silanol groups), which also were responsible for increased hydrophilicity. The templated xerogels resulted in up to a 25% concentration of methyl functional groups (T-3 and T-2 species), leading to hydrophobic xerogels. The best results in terms of structural integrity and hydrophobicity were obtained with templated xerogels prepared with the C6 surfactant. The results in this study suggest that surfactant-enhanced condensation reactions lead to structures with a high contribution of Q(4) groups, which are not susceptible to water attack, but are strong enough to oppose matrix densification during rehydration.
Resumo:
This paper presents the results of the characterisation of templated silica xerogels as precursor material for molecular sieve silica membranes for gas separation. The template agent integrated in the xerogel matrix is a methyl ligand covalently bended to the siloxane network in the form of methyltriethoxysilane (MTES). Several surface and microstructural characterisation techniques such as TGA, FTIR, NMR, and nitrogen adsorption have been employed to obtain information on the reaction mechanisms involved in the sol-gel processing of such molecular sieves. The characterisation results show the effects of processing parameters such as heat treatment temperature, and the concentration of the covalently bonded template on the development of the pore structure. It was found that calcination temperature significantly enhanced the condensation reactions thus resulted in more Si-O-Si groups being formed. This was also confirmed with the data of FTIR characterisation showing enhanced silicon bands at higher heat treatment temperatures. As a result of the promoted densification and shrinkable pore network the micropore volume also reduced with increasing methyl ligand molar ratio. However, the mean pore diameter does not change significantly with calcination temperature. While the contribution of the templates towards controlling pore size is less precise, increasing the methyl ligand molar ratio results in the broadening of the pore size distribution and lower pore volume. Higher template concentration induces the collapse of the xerogel matrix due to capillary stress promoting dense xerogels with low pore volume (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In a preliminary survey of genetic variability among 12 Australian isolates of Puccinia coronata f. sp. avenae Fraser and Led (Pca) collected from 1966 to 1993, two relatively diverse (
Resumo:
Motion of chains of poly(ethylene oxide) within the interlayer spacing of 2:1 phyllosilicate/montmorillonite was studied with H-1 and C-13 NMR spectroscopy. Measurements of the H-1 NMR line widths and relaxation times across a large temperature range were used to determine the effect of bulk thermal transitions on polymer chain motion within the nanocomposites. The results were consistent with previous reports of low apparent activation energies of motion. Details of the frequency and geometry of motion were obtained from a comparison of the C-13 cross-polarity/magic-angle spinning spectra and relaxation times of the nanocomposite with those of the pure polymer. (C) 2001 John Wiley & Sons, Inc.