697 resultados para MOIETY
Resumo:
A regioselective approach for the synthesis of substituted naphthofurans and dibenzofurans has been demonstrated through a ring transformation reaction of suitably functionalized 2H-pyran-2-ones by reaction with 6,7-dihydro-5H-benzofuran-4-one and 7-methoxybenzofuran-3-one, respectively in high yields. The novelty of the procedure lies in the creation of an aromatic ring transformed by 2H-pyran-2-one involving the –COCH2- moiety of a cyclic ketone.
Resumo:
In healthy people, glucose is metabolized through Embden-Meyerhoff pathway. In cases of diabetes mellitus, with the increased levels of glucose in insulin-insensitive tissues the Aldose Reductase (AR) in polyol pathway facilitates the conversion of glucose to sorbitol. In this cascade of events the accumulated sorbitol is attributed to be responsible for cataract, neuropathy and retinopathy in diabetic cases.1,2 Thus, the inhibition of AR in polyol pathway may prevent and lead to the cure of the complications arising out of the diabetes mellitus. In this background, Matsuda and coworkers3 studied the AR inhibitory activity of large number of flavones and related compounds from traditional antidiabetic remedies. Here, many of these compounds shared 2-Aryl-benzpyran-4-one as scaffold for different chemical groups surrounding this moiety. This offers scope to investigate the AR inhibitory activity of these compounds in relation to the functional group environment surrounding this core
Resumo:
Two series of closely related antimalarial agents, 7-chloro-4-(3’,5’-disubstitutedanilino) quinolines, have been analyzed using Combinatorial Protocol in Multiple Linear Regression (CP-MLR) for the structure-activity relations with more than 450 topological descriptors for each set. The study clearly suggested that 3’- and 5’- substituents of the anilino moiety map different domains in the activity space. While one domain favors the compact structural frames having aromatic, heterocyclic ring(s) substituted with closely spaced F, NO2 and O functional groups, the other prefers structural frames enriched with unsaturation, loops, branches, electronic content and devoid of carbonyl function. Also, this study gives an indication in favour of the electron rich centres in the aniline substituent groups for better antimalarial activity; an observation in line with several of the previous reports too. The models developed and the participating descriptors suggest that the substituent groups of the 4-anilino moiety of the 4-(3’, 5’-disubstitutedanilino)quinolines hold scope for further modification in the optimisation of the antimalarial activity.
Resumo:
The self-assembly and redox-properties of two viologen derivatives, N-hexyl-N-(6-thiohexyl)-4,4-bipyridinium bromide (HS-6V6-H) and N,N-bis(6-thiohexyl)-4,4-bipyridinium bromide (HS-6V6-SH), immobilized on Au(111)-(1x1) macro-electrodes were investigated by cyclic voltammetry, surface enhanced infrared spectroscopy (SEIRAS) and in situ scanning tunneling microscopy (STM). Depending on the assembly conditions one could distinguish three different types of adlayers for both viologens: a low coverage disordered and an ordered striped phase of flat oriented molecules as well as a high coverage monolayer composed of tilted viologen moieties. Both molecules, HS-6V6-H and HS-6V6-SH, were successfully immobilized on Au(poly) nano-electrodes, which gave a well-defined redox-response in the lower pA–current range. An in situ STM configuration was employed to explore electron transport properties of single molecule junctions Au(T)|HS-6V6-SH(HS-6V6-H)|Au(S). The observed sigmoidal potential dependence, measured at variable substrate potential ES and at constant bias voltage (ET–ES), was attributed to electronic structure changes of the viologen moiety during the one-electron reduction/re-oxidation process V2+ V+. Tunneling experiments in asymmetric, STM-based junctions Au(T)-S-6V6-H|Au(S) revealed current (iT)–voltage (ET) curves with a maximum located at the equilibrium potential of the redox-process V2+ V+. The experimental iT–ET characteristics of the HS-6V6-H–modified tunneling junction were tentatively attributed to a sequential two-step electron transfer mechanism.
Resumo:
We report a combined experimental and theoretical investigation of the length dependence and anchor group dependence of the electrical conductance of a series of oligoyne molecular wires in single-molecule junctions with gold contacts. Experimentally, we focus on the synthesis and properties of diaryloligoynes with n = 1, 2, and 4 triple bonds and the anchor dihydrobenzo[b]thiophene (BT). For comparison, we also explored the aurophilic anchor group cyano (CN), amino (NH2), thiol (SH), and 4-pyridyl (PY). Scanning tunneling microscopy break junction (STM-BJ) and mechanically controllable break junction (MCBJ) techniques are employed to investigate single-molecule conductance characteristics. The BT moiety is superior as compared to traditional anchoring groups investigated so far. BT-terminated oligoynes display a 100% probability of junction formation and possess conductance values which are the highest of the oligoynes studied and, moreover, are higher than other conjugated molecular wires of similar length. Density functional theory (DFT)-based calculations are reported for oligoynes with n = 1−4 triple bonds. Complete conductance traces and conductance distributions are computed for each family of molecules. The sliding of the anchor groups leads to oscillations in both the electrical conductance and the binding energies of the studied molecular wires. In agreement with experimental results, BT-terminated oligoynes are predicted to have a high electrical conductance. The experimental attenuation constants βH range between 1.7 nm−1 (CN) and 3.2 nm−1 (SH) and show the following trend: βH(CN) < βH(NH2) < βH(BT) < βH(PY) ≈ βH(SH). DFT-based calculations yield lower values, which range between 0.4 nm−1 (CN) and 2.2 nm−1 (PY).
Resumo:
The platform-independent software package consisting of the oligonucleotide mass assembler (OMA) and the oligonucleotide peak analyzer (OPA) was created to support the analysis of oligonucleotide mass spectra. It calculates all theoretically possible fragments of a given input sequence and annotates it to an experimental spectrum, thus, saving a large amount of manual processing time. The software performs analysis of precursor and product ion spectra of oligonucleotides and their analogues comprising user-defined modifications of the backbone, the nucleobases, or the sugar moiety, as well as adducts with metal ions or drugs. The ability to expand the library of building blocks and to implement individual structural variations makes it extremely useful for supporting the analysis of therapeutically active compounds. The functionality of the software tool is demonstrated on the examples of a platinated doublestranded oligonucleotide and a modified RNA sequence. Experiments also reveal the unique dissociation behavior of platinated higher-order DNA structures.
Resumo:
The stereoselective syntheses of 7,8,9-trideoxypeloruside A (4) and a monocyclic peloruside A analogue lacking the entire tetrahydropyran moiety (3) are described. The syntheses proceeded through the PMB-ether of an ω-hydroxy β-keto aldehyde as a common intermediate which was elaborated into a pair of diastereomeric 1,3-syn and -anti diols by stereoselective Duthaler–Hafner allylations and subsequent 1,3-syn or anti reduction. One of these isomers was further converted into a tetrahydropyran derivative in a high-yielding Prins reaction, to provide the precursor for bicyclic analogue 4. Downstream steps for both syntheses included the substrate-controlled addition of a vinyl lithium intermediate to an aldehyde, thus connecting the peloruside side chain to C15 (C13) of the macrocyclic core structure in a fully stereoselective fashion. In the case of monocyclic 3 macrocyclization was based on ring-closing olefin metathesis (RCM), while bicyclic 4 was cyclized through Yamaguchi-type macrolactonization. The macrolactonization step was surprisingly difficult and was accompanied by extensive cyclic dimer formation. Peloruside A analogues 3 and 4 inhibited the proliferation of human cancer cell lines in vitro with micromolar and sub-micromolar IC50 values, respectively. The higher potency of 4 highlights the importance of the bicyclic core structure of peloruside A for nM biological activity.
Resumo:
Avibacterium paragallinarum, the etiological agent of infectious coryza in chicken, was found to encode a bivalent serine-protease - RTX-porin toxin named AvxA. This toxin is encoded on a classical RTX operon structure with the activator gene avxC, the structural serin-protease-RTX toxin gene avxA, and the genes for a proper type I secretion system avxBD. AvxA is activated by the product of the avxC gene, secreted by the avxBD specified type I secretion system and proteolytically processed leaving a 95 kDa RTX moiety that is found in culture supernatants of A. paragallinarum serovars A, B and C. The RTX moiety of AvxA (AvxA-RTX) is cytotoxic against the avian macrophage like cell line HD11 but not against bovine macrophage cell line BoMac. Purified IgG from hyper-immune rabbit anti-AvxA-RTX serum made by immunization with recombinant AvxA-RTX from a serotype A strain fully neutralizes the cytotoxic activity of recombinant active AvxA-RTX and of A. paragallinarum serotypes A, B and C. This indicates that AvxA is a common major virulence attribute of all A. paragallinarum serotypes.
Resumo:
2-Aminoethyl diphenylborinate (2-APB) is a known modulator of the IP3 receptor, the calcium ATPase SERCA, the calcium release-activated calcium channel Orai and TRP channels. More recently, it was shown that 2-APB is an efficient inhibitor of the epithelial calcium channel TRPV6 which is overexpressed in prostate cancer. We have conducted a structure-activity relationship study of 2-APB congeners to understand their inhibitory mode of action on TRPV6. Whereas modifying the aminoethyl moiety did not significantly change TRPV6 inhibition, substitution of the phenyl rings of 2-APB did. Our data show that the diaryl borinate moiety is required for biological activity and that the substitution pattern of the aryl rings can influence TRPV6 versus SOCE inhibition. We have also discovered that 2-APB is hydrolyzed and transesterified within minutes in solution.
Resumo:
The thiazolide nitazoxanide (2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide; NTZ) is composed of a nitrothiazole- ring and a salicylic acid moiety, which are linked together through an amide bond. NTZ exhibits a broad spectrum of activities against a wide range of helminths, protozoa, enteric bacteria, and viruses infecting animals and humans. Since the first synthesis of the drug, a number of derivatives of NTZ have been produced, which are collectively named thiazolides. These are modified versions of NTZ, which include the replacement of the nitro group with bromo-, chloro-, or other functional groups, and the differential positioning of methyl- and methoxy-groups on the salicylate ring. The presence of a nitro group seems to be the prerequisite for activities against anaerobic or microaerophilic parasites and bacteria. Intracellular parasites and viruses, however, are susceptible to non-nitro-thiazolides with equal or higher effectiveness. Moreover, nitro- and bromo-thiazolides are effective against proliferating mammalian cells. Biochemical and genetic approaches have allowed the identification of respective targets and the molecular basis of resistance formation. Collectively, these studies strongly suggest that NTZ and other thiazolides exhibit multiple mechanisms of action. In microaerophilic bacteria and parasites, the reduction of the nitro group into a toxic intermediate turns out to be the key factor. In proliferating mammalian cells, however, bromo- and nitro-thiazolides trigger apoptosis, which may also explain their activities against intracellular pathogens. The mode of action against helminths may be similar to mammalian cells but has still not been elucidated.
Resumo:
A pi-conjugated tetrathiafulvalene-fused perylenediimide (TTF-PDI) molecular dyad is successfully used as a solution-processed active material for light sensitive ambipolar field-effect transistors with balanced hole and electron mobilities. The photo-response of the TTF-PDI dyad resembles its absorption profile. Wavelength-dependent photoconductivity measurements reveal an important photo-response at an energy corresponding to a PDI-localized electronic pi-pi* transition and also a more moderate effect due to an intramolecular charge transfer from the HOMO localized on the TTF unit to the LUMO localized on the PDI moiety. This work clearly elucidates the interplay between intra- and intermolecular electronic processes in organic devices.
Resumo:
Interleukin-2 activated lymphocytes, designated lymphokine-activated killers (LAK), acquire the unique capacity to express potent cytologic activity against a broad spectrum of abnormal and/or transformed NK-sensitive and NK-resistant target cells while sparing normal cell types. Investigations into the target spectra exhibited by cloned effector cells indicate that LAK cells express a polyspecific recognition mechanism that identifies an undefined class of cell surface-associated molecules expressed on susceptible targets. This report extends our previous investigations into the biochemical nature of these molecules by characterizing the functional role of two tumor cell-surface-associated epitopes implicated in conferring target cells with susceptibility to LAK-mediated cytotoxicity. The first moiety is implicated in the formation of effector/target cell conjugates. This binding ligand is preferentially expressed on tumor cells relative to LAK-resistant PBL target cells, sensitive to trypsin treatment, resistant to functional inactivation by heat- and detergent-induced conformational changes, and does not require N-linked glycosylation to maintain binding activity. In contrast, a carbohydrate-associated epitope represents the second tumor-associated molecule required for target cell susceptibility to LAK cells. Specifically, N-linked glyoprotein synthesis represents an absolute requirement for post-trypsin recovery of target cell susceptibility. The minimal N-linked oligosaccharide residue capable of restoring this second signal has been identified as a high mannose structure. Although ultimately required for tumor cell susceptibility, as measured in $\sp{51}$Cr-release assays, this N-glycan-associated molecule is not required for the differential tumor cell binding expressed by LAK cells. Furthermore, N-glycan expression is not adequate in itself to confer target cell susceptibility. Additional categories of cell surface components have been investigated, including O-linked oligosaccharides, and glycosaminoglycans, without identifying additional moieties relevant to target cell recognition. Collectively, these data suggest that tumor cell recognition by LAK cells is dependent on cell surface presentation of two epitopes: a trypsin-sensitive molecule that participates in the initial conjugate formation and an N-glycan-associated moiety that is involved in a post-binding event required for target cell killing. ^
Resumo:
Using a "collision-coupling" model for $\beta \sb 2$-adrenergic receptor-mediated activation of adenylylcyclase in S49 lymphoma cells, the rate-limiting step of that activation was identified as the association of an "active-state", hormone-bound receptor (HR$\sp\*$) with a G$\sb{\rm s}$-adenylylcyclase moiety (G$\sb{\rm s}$C). It was subsequently hypothesized that the location of the rate-limiting step would not be shifted elsewhere in the activation scheme by receptor desensitization. The traditional focus of receptor desensitization studies has been on modifications of the receptor molecule itself. A "clear-cut" answer to the present hypothesis provides new information on modifications in the function of the receptor following desensitization.^ "Heterologous" desensitization was induced in wild type S49 cells with agents which increase intracellular cAMP without occupying $\beta\sb2$-adrenergic receptors; PGE$\sb1$, forskolin and dibutyryl cAMP. These treatments avoided overlapping effects on $\beta\sb2$-adrenergic receptors by the "homologous" mechanism, in which occupancy by hormone is causative. Although the steady-state activation rate was decreased following heterologous desensitization, that rate was still limited by the association between HR* and G$\sb{\rm s}$C. Thus "heterologous" desensitization acts at the equilibrium between HR and HR* (which is driven by hormone efficiency) such that HR* formation becomes less likely and the frequency of HR*G$\sb{\rm s}$C associations decreases.^ "Homologous" desensitization was induced by high (1-10$\mu$M) epinephrine concentrations in the S49 variant deficient in cAMP-dependent protein kinase, KIN$\sp-$. Use of KIN$\sp-$minimized overlapping effects by the "heterologous" mechanism, which is PKA-dependent. Following homologous desensitization, roughly 50% of the receptors in plasma membrane preparations no longer formed HR*G$\sb{\rm s}$C complexes; evidenced by a decrease in high-affinity hormone binding sites. The loss of HR*G$\sb{\rm s}$C formation did not appear related to the HR/HR* equilibrium. Increasing the efficiency of the assay agonist did nothing to "override" the effect. HR*G$\sb{\rm s}$C association was still the rate-limiting step among the remaining functional receptors. It was not distinguishable whether the remaining activity was "desensitized" due to adenylylcyclase having decreased access to receptors within plasma membrane fragments or due to an effect similar to "heterologous" desensitization. ^
Resumo:
The fluorinated olefinic peptide nucleic acid (F-OPA) system was designed as a peptide nucleic acid (PNA) analogue in which the base carrying amide moiety was replaced by an isostructural and isoelectrostatic fluorinated C-C double bond, locking the nucleobases in one of the two possible rotameric forms. By comparison of the base-pairing properties of this analogue with its nonfluorinated analogue OPA and PNA, we aimed at a closer understanding of the role of this amide function in complementary DNA recognition. Here we present the synthesis of the F-OPA monomer building blocks containing the nucleobases A, T, and G according to the MMTr/Acyl protecting group scheme. Key steps are a selective desymmetrization of the double bond in the monomer precursor via lactonization as well as a highly regioselective Mitsunobu reaction for the introduction of the bases. PNA decamers containing single F-OPA mutations and fully modified F-OPA decamers and pentadecamers containing the bases A and T were synthesized by solid-phase peptide chemistry, and their hybridization properties with complementary parallel and antiparallel DNA were assessed by UV melting curves and CD spectroscopic methods. The stability of the duplexes formed by the decamers containing single (Z)-F-OPA modifications with parallel and antiparallel DNA was found to be strongly dependent on their position in the sequence with T(m) values ranging from +2.4 to -8.1 degrees C/modification as compared to PNA. Fully modified F-OPA decamers and pentadecamers were found to form parallel duplexes with complementary DNA with reduced stability compared to PNA or OPA. An asymmetric F-OPA pentadecamer was found to form a stable self-complex (T(m) approximately 65 degrees C) of unknown structure. The generally reduced affinity to DNA may therefore be due to an increased propensity for self-aggregation
Resumo:
The roles played by many ncRNAs remain largely unknown. Similarly, relatively little is known about the RNA binding proteins involved in processing ncRNA. Identification of new RNA/RNA binding protein (RBP) interactions may pave the way to gain a better understanding of the complex events occurring within cells during gene expression and ncRNA biogenesis. The development of chemical tools for the isolation of RBPs is of paramount importance. In this context, we report on the synthesis of the uridine phosphoramidite U Dz that bears a diazirine moiety on the nucleobase. RNA probes containing U Dz units were irradiated in the presence of single-stranded DNA binding protein (SSB), which is also known to bind ssRNAs, and shown to efficiently (15% yield) and selectively cross-link to the protein. The corresponding diazirine-modified uridine triphosphate U DzTP was synthesized and its capacity to act as a substrate for the T7 RNA polymerase was tested in transcription assays. U DzTP was accepted with a maximum yield of 38% for a 26mer RNA containing a single incorporation and 28% yield for triple consecutive incorporations. Thus, this uridine analogue represents a convenient biochemical tool for the identification of RNA binding proteins and unraveling the role and function played by ncRNAs.