527 resultados para MODIS-NDVI
Resumo:
Background & Objective: The most northern populations of two sand fly species (Phlebotomus mascittii and Phlebotomus neclectus) in the Carpathian Basin are known from Central Hungary. The most important limiting factor of the distribution of Phlebotomus species in the region is the annual minimum temperature which may be positively affected by the urban heat island and the climate change in the future. Method: Based on the latest case reports of the species, Climate Envelope Model was done for the period 1961-1990 and 2025-2050 to project the potential urban distribution of the species. The climatic data were obtained from RegCM regional climate model and MODIS satellite images. Results: The recent occurrence of the species in Central Hungary indicates that Phlebotomus species can overwinter in non-heated shelters in the built environment. Interpretation & Conclusion: Jointly heat island and future climate change seem to be able to provide suitable environment for the studied species in urban areas in a great extent.
Resumo:
Eddy covariance (EC) estimates of carbon dioxide (CO2) fluxes and energy balance are examined to investigate the functional responses of a mature mangrove forest to a disturbance generated by Hurricane Wilma on October 24, 2005 in the Florida Everglades. At the EC site, high winds from the hurricane caused nearly 100% defoliation in the upper canopy and widespread tree mortality. Soil temperatures down to -50 cm increased, and air temperature lapse rates within the forest canopy switched from statically stable to statically unstable conditions following the disturbance. Unstable conditions allowed more efficient transport of water vapor and CO2 from the surface up to the upper canopy layer. Significant increases in latent heat fluxes (LE) and nighttime net ecosystem exchange (NEE) were also observed and sensible heat fluxes (H) as a proportion of net radiation decreased significantly in response to the disturbance. Many of these impacts persisted through much of the study period through 2009. However, local albedo and MODIS (Moderate Resolution Imaging Spectro-radiometer) data (the Enhanced Vegetation Index) indicated a substantial proportion of active leaf area recovered before the EC measurements began 1 year after the storm. Observed changes in the vertical distribution and the degree of clumping in newly emerged leaves may have affected the energy balance. Direct comparisons of daytime NEE values from before the storm and after our measurements resumed did not show substantial or consistent differences that could be attributed to the disturbance. Regression analyses on seasonal time scales were required to differentiate the storm's impact on monthly average daytime NEE from the changes caused by interannual variability in other environmental drivers. The effects of the storm were apparent on annual time scales, and CO2 uptake remained approximately 250 g C m-2 yr-1 lower in 2009 compared to the average annual values measured in 2004-2005. Dry season CO2 uptake was relatively more affected by the disturbance than wet season values. Complex leaf regeneration dynamics on damaged trees during ecosystem recovery are hypothesized to lead to the variable dry versus wet season impacts on daytime NEE. In contrast, nighttime CO2 release (i.e., nighttime respiration) was consistently and significantly greater, possibly as a result of the enhanced decomposition of litter and coarse woody debris generated by the storm, and this effect was most apparent in the wet seasons compared to the dry seasons. The largest pre- and post-storm differences in NEE coincided roughly with the delayed peak in cumulative mortality of stems in 2007-2008. Across the hurricane-impacted region, cumulative tree mortality rates were also closely correlated with declines in peat surface elevation. Mangrove forest-atmosphere interactions are interpreted with respect to the damage and recovery of stand dynamics and soil accretion processes following the hurricane.
Resumo:
Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC) systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE), and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt) increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and information about environmental conditions.
Resumo:
Within the marl prairie grasslands of the Florida Everglades, USA, the combined effects of fire and flooding usually lead to very significant changes in tree island structure and composition. Depending on fire severity and post-fire hydroperiod, these effects vary spatially and temporally throughout the landscape, creating a patchy post-fire mosaic of tree islands with different successional states. Through the use of the Normalized Difference Vegetation Index (NDVI) and three predictor variables (marsh water table elevation at the time of fire, post-fire hydroperiod, and tree island size), along with logistic regression analysis, we examined the probability of tree island burning and recovering following the Mustang Corner Fire (May to June 2008) in Everglades National Park. Our data show that hydrologic conditions during and after fire, which are under varying degrees of management control, can lead to tree island contraction or loss. More specifically, the elevation of the marsh water table at the time of the fire appears to be the most important parameter determining the severity of fire in marl prairie tree islands. Furthermore, in the post-fire recovery phase, both tree island size and hydroperiod during the first year after the fire played important roles in determining the probability of tree island recovery, contraction, or loss.
Resumo:
A growing human population, shifting human dietary habits, and climate change are negatively affecting global ecosystems on a massive scale. Expanding agricultural areas to feed a growing population drives extensive habitat loss, and climate change compounds stresses on both food security and ecosystems. Understanding the negative effects of human diet and climate change on agricultural and natural ecosystems provides a context within which potential technological and behavioral solutions can be proposed to help maximize conservation. The purpose of this research was to (1) examine the potential effects of climate change on the suitability of areas for commercial banana plantations in Latin America in the 2050s and how shifts in growing areas could affect protected areas; (2) test the ability of small unmanned aerial vehicles (UAVs) to map productivity of banana plantations as a potential tool for increasing yields and decreasing future plantation expansions; (3) project the effects on biodiversity of increasing rates of animal product consumption in developing megadiverse countries; and (4) estimate the capacity of global pasture biomass production and Fischer-Tropsch hydrocarbon synthesis (IGCC-FT) processing to meet electricity, gasoline and diesel needs. The results indicate that (1) the overall extent of areas suitable for conventional banana cultivation is predicted to decrease by 19% by 2050 because of a hotter and drier climate, but all current banana exporting countries are predicted to maintain some suitable areas with no effects on protected areas; (2) Spatial patterns of NDVI and ENDVI were significantly positively correlated with several metrics of fruit yield and quality, indicating that UAV systems can be used in banana plantations to map spatial patterns of fruit yield; (3) Livestock production is the single largest driver of habitat loss, and both livestock and feedstock production are increasing in developing biodiverse tropical countries. Reducing global animal product consumption should therefore be at the forefront of strategies aimed at reducing biodiversity loss; (4) Removing livestock from global pasture lands and instead utilizing the biomass production could produce enough energy to meet 100% of the electricity, gasoline, and diesel needs of over 40 countries with extensive grassland ecosystems, primarily in tropical developing countries.
Influência das condições ambientais no verdor da vegetação da caatinga frente às mudanças climáticas
Resumo:
The Caatinga biome, a semi-arid climate ecosystem found in northeast Brazil, presents low rainfall regime and strong seasonality. It has the most alarming climate change projections within the country, with air temperature rising and rainfall reduction with stronger trends than the global average predictions. Climate change can present detrimental results in this biome, reducing vegetation cover and changing its distribution, as well as altering all ecosystem functioning and finally influencing species diversity. In this context, the purpose of this study is to model the environmental conditions (rainfall and temperature) that influence the Caatinga biome productivity and to predict the consequences of environmental conditions in the vegetation dynamics under future climate change scenarios. Enhanced Vegetation Index (EVI) was used to estimate vegetation greenness (presence and density) in the area. Considering the strong spatial and temporal autocorrelation as well as the heterogeneity of the data, various GLS models were developed and compared to obtain the best model that would reflect rainfall and temperature influence on vegetation greenness. Applying new climate change scenarios in the model, environmental determinants modification, rainfall and temperature, negatively influenced vegetation greenness in the Caatinga biome. This model was used to create potential vegetation maps for current and future of Caatinga cover considering 20% decrease in precipitation and 1 °C increase in temperature until 2040, 35% decrease in precipitation and 2.5 °C increase in temperature in the period 2041-2070 and 50% decrease in precipitation and 4.5 °C increase in temperature in the period 2071-2100. The results suggest that the ecosystem functioning will be affected on the future scenario of climate change with a decrease of 5.9% of the vegetation greenness until 2040, 14.2% until 2070 and 24.3% by the end of the century. The Caatinga vegetation in lower altitude areas (most of the biome) will be more affected by climatic changes.
Resumo:
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately.
Resumo:
This study used Landsat 8 satellite imagery to identify environmental variables of households with malaria vector breeding sites in a malaria endemic rural district in Western Kenya. Understanding the influence of environmental variables on the distribution of malaria has been critical in the strengthening of malaria control programs. Using remote sensing and GIS technologies, this study performed a land classification, NDVI, Tasseled Cap Wetness Index, and derived land surface temperature values of the study area and examined the significance of each variable in predicting the probability of a household with a mosquito breeding site with and without larvae. The findings of this study revealed that households with any potential breeding sites were characterized by higher moisture, higher vegetation density (NDVI) and in urban areas or roads. The results of this study also confirmed that land surface temperature was significant in explaining the presence of active mosquito breeding sites (P< 0.000). The present study showed that freely available Landsat 8 imagery has limited use in deriving environmental characteristics of malaria vector habitats at the scale of the Bungoma East District in Western Kenya.
Resumo:
The amount and quality of available biomass is a key factor for the sustainable livestock industry and agricultural management related decision making. Globally 31.5% of land cover is grassland while 80% of Ireland’s agricultural land is grassland. In Ireland, grasslands are intensively managed and provide the cheapest feed source for animals. This dissertation presents a detailed state of the art review of satellite remote sensing of grasslands, and the potential application of optical (Moderate–resolution Imaging Spectroradiometer (MODIS)) and radar (TerraSAR-X) time series imagery to estimate the grassland biomass at two study sites (Moorepark and Grange) in the Republic of Ireland using both statistical and state of the art machine learning algorithms. High quality weather data available from the on-site weather station was also used to calculate the Growing Degree Days (GDD) for Grange to determine the impact of ancillary data on biomass estimation. In situ and satellite data covering 12 years for the Moorepark and 6 years for the Grange study sites were used to predict grassland biomass using multiple linear regression, Neuro Fuzzy Inference Systems (ANFIS) models. The results demonstrate that a dense (8-day composite) MODIS image time series, along with high quality in situ data, can be used to retrieve grassland biomass with high performance (R2 = 0:86; p < 0:05, RMSE = 11.07 for Moorepark). The model for Grange was modified to evaluate the synergistic use of vegetation indices derived from remote sensing time series and accumulated GDD information. As GDD is strongly linked to the plant development, or phonological stage, an improvement in biomass estimation would be expected. It was observed that using the ANFIS model the biomass estimation accuracy increased from R2 = 0:76 (p < 0:05) to R2 = 0:81 (p < 0:05) and the root mean square error was reduced by 2.72%. The work on the application of optical remote sensing was further developed using a TerraSAR-X Staring Spotlight mode time series over the Moorepark study site to explore the extent to which very high resolution Synthetic Aperture Radar (SAR) data of interferometrically coherent paddocks can be exploited to retrieve grassland biophysical parameters. After filtering out the non-coherent plots it is demonstrated that interferometric coherence can be used to retrieve grassland biophysical parameters (i. e., height, biomass), and that it is possible to detect changes due to the grass growth, and grazing and mowing events, when the temporal baseline is short (11 days). However, it not possible to automatically uniquely identify the cause of these changes based only on the SAR backscatter and coherence, due to the ambiguity caused by tall grass laid down due to the wind. Overall, the work presented in this dissertation has demonstrated the potential of dense remote sensing and weather data time series to predict grassland biomass using machine-learning algorithms, where high quality ground data were used for training. At present a major limitation for national scale biomass retrieval is the lack of spatial and temporal ground samples, which can be partially resolved by minor modifications in the existing PastureBaseIreland database by adding the location and extent ofeach grassland paddock in the database. As far as remote sensing data requirements are concerned, MODIS is useful for large scale evaluation but due to its coarse resolution it is not possible to detect the variations within the fields and between the fields at the farm scale. However, this issue will be resolved in terms of spatial resolution by the Sentinel-2 mission, and when both satellites (Sentinel-2A and Sentinel-2B) are operational the revisit time will reduce to 5 days, which together with Landsat-8, should enable sufficient cloud-free data for operational biomass estimation at a national scale. The Synthetic Aperture Radar Interferometry (InSAR) approach is feasible if there are enough coherent interferometric pairs available, however this is difficult to achieve due to the temporal decorrelation of the signal. For repeat-pass InSAR over a vegetated area even an 11 days temporal baseline is too large. In order to achieve better coherence a very high resolution is required at the cost of spatial coverage, which limits its scope for use in an operational context at a national scale. Future InSAR missions with pair acquisition in Tandem mode will minimize the temporal decorrelation over vegetation areas for more focused studies. The proposed approach complements the current paradigm of Big Data in Earth Observation, and illustrates the feasibility of integrating data from multiple sources. In future, this framework can be used to build an operational decision support system for retrieval of grassland biophysical parameters based on data from long term planned optical missions (e. g., Landsat, Sentinel) that will ensure the continuity of data acquisition. Similarly, Spanish X-band PAZ and TerraSAR-X2 missions will ensure the continuity of TerraSAR-X and COSMO-SkyMed.
Resumo:
Global air surface temperatures and precipitation have increased over the last several decades resulting in a trend of greening across the Circumpolar Arctic. The spatial variability of warming and the inherent effects on plant communities has not proven to be uniform or homogeneous on global or local scales. We can apply remote sensing vegetation indices such as the Normalized Difference Vegetation Index (NDVI) to map and monitor vegetation change (e.g., phenology, greening, percent cover, and biomass) over time. It is important to document how Arctic vegetation is changing, as it will have large implications related to global carbon and surface energy budgets. The research reported here examined vegetation greening across different spatial and temporal scales at two disparate Arctic sites: Apex River Watershed (ARW), Baffin Island, and Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU. To characterize the vegetation in the ARW, high spatial resolution WorldView-2 data were processed to create a supervised land-cover classification and model percent vegetation cover (PVC) (a similar process had been completed in a previous study for the CBAWO). Meanwhile, NDVI data spanning the past 30 years were derived from intermediate resolution Landsat data at the two Arctic sites. The land-cover classifications at both sites were used to examine the Landsat NDVI time series by vegetation class. Climate variables (i.e., temperature, precipitation and growing season length (GSL) were examined to explore the potential relationships of NDVI to climate warming. PVC was successfully modeled using high resolution data in the ARW. PVC and plant communities appear to reside along a moisture and altitudinal gradient. The NDVI time series demonstrated an overall significant increase in greening at the CBAWO (High Arctic site), specifically in the dry and mesic vegetation type. However, similar overall greening was not observed for the ARW (Low Arctic site). The overall increase in NDVI at the CBAWO was attributed to a significant increase in July temperatures, precipitation and GSL.
Resumo:
This paper discusses some aspects of hunter-gatherer spatial organization in southern South Patagonia, in later times to 10,000 cal yr BP. Various methods of spatial analysis, elaborated with a Geographic Information System (GIS) were applied to the distributional pattern of archaeological sites with radiocarbon dates. The shift in the distributional pattern of chronological information was assessed in conjunction with other lines of evidence within a biogeographic framework. Accordingly, the varying degrees of occupation and integration of coastal and interior spaces in human spatial organization are explained in association with the adaptive strategies hunter-gatherers have used over time. Both are part of the same human response to changes in risk and uncertainty variability in the region in terms of resource availability and environmental dynamics.
Resumo:
Energy policies around the world are mandating for a progressive increase in renewable energy production. Extensive grassland areas with low productivity and land use limitations have become target areas for sustainable energy production to avoid competition with food production on the limited available arable land resources and minimize further conversion of grassland into intensively managed energy cropping systems or abandonment. However, the high spatio-temporal variability in botanical composition and biochemical parameters is detrimental to reliable assessment of biomass yield and quality regarding anaerobic digestion. In an approach to assess the performance for predicting biomass using a multi-sensor combination including NIRS, ultra-sonic distance measurements and LAI-2000, biweekly sensor measurements were taken on a pure stand of reed canary grass (Phalaris aruninacea), a legume grass mixture and a diversity mixture with thirty-six species in an experimental extensive two cut management system. Different combinations of the sensor response values were used in multiple regression analysis to improve biomass predictions compared to exclusive sensors. Wavelength bands for sensor specific NDVI-type vegetation indices were selected from the hyperspectral data and evaluated for the biomass prediction as exclusive indices and in combination with LAI and ultra-sonic distance measurements. Ultrasonic sward height was the best to predict biomass in single sensor approaches (R² 0.73 – 0.76). The addition of LAI-2000 improved the prediction performance by up to 30% while NIRS barely improved the prediction performance. In an approach to evaluate broad based prediction of biochemical parameters relevant for anaerobic digestion using hyperspectral NIRS, spectroscopic measurements were taken on biomass from the Jena-Experiment plots in 2008 and 2009. Measurements were conducted on different conditions of the biomass including standing sward, hay and silage and different spectroscopic devices to simulate different preparation and measurement conditions along the process chain for biogas production. Best prediction results were acquired for all constituents at laboratory measurement conditions with dried and ground samples on a bench-top NIRS system (RPD > 3) with a coefficient of determination R2 < 0.9. The same biomass was further used in batch fermentation to analyse the impact of species richness and functional group composition on methane yields using whole crop digestion and pressfluid derived by the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Although species richness and functional group composition were largely insignificant, the presence of grasses and legumes in the mixtures were most determining factors influencing methane yields in whole crop digestion. High lignocellulose content and a high C/N ratio in grasses may have reduced the digestibility in the first cut material, excess nitrogen may have inhibited methane production in second cut legumes, while batch experiments proved superior specific methane yields of IFBB press fluids and showed that detrimental effects of the parent material were reduced by the technical treatment
Resumo:
Resources created at the University of Southampton for the module Remote Sensing for Earth Observation
Resumo:
Current dynamics in the Strait of Bonifacio (south Corsica) were investigated at a small scale during the STELLAMARE1 multidisciplinary cruise in summer 2012, using in situ measurements and modeling data. The Strait of Bonifacio is a particularly sensitive marine area in which specific conservation measures have been taken to preserve the natural environment and wild species. Good knowledge of the hydrodynamics in this area is essential to optimize the Marine Protected Area's management rules. Therefore, we used a high-resolution model (400 m) based on the MARS3D code to investigate the main flux exchanges and to formulate certain hypotheses about the formation of possible eddy structures. The aim of the present paper is first to synthetize the results obtained by combining Acoustic Doppler Current Profiler data, hydrological parameters, Lagrangian drifter data, and satellite observations such as MODIS OC5 chlorophyll a data or Metop-A AVHRR Sea Surface Temperature (SST) data. These elements are then used to validate the presence of the mesoscale eddies simulated by the model and their recurrence outside the cruise period. To complete the analysis, the response of the 3D hydrodynamical model was evaluated under two opposing wind systems and certain biases were detected. Strong velocities up to 1 m s(-1) were recorded in the east part due to the Venturi effect; a complementary system of vortices governed by Coriolis effect and west wind was observed in the west part, and horizontal stratification in the central part has been identified under typical wind condition.
Resumo:
Wydział Biologii: Instytut Biologii Środowiska, Pracownia Aeropalinologii