537 resultados para MICROMECHANICAL RESONATORS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

El trabajo contenido en esta tesis doctoral está encuadrado en el desarrollo de antenas reconfigurables electrónicamente capaces de proporcionar prestaciones competitivas a las aplicaciones cada vez más comunes que operan a frecuencias superiores a 60 GHz. En concreto, esta tesis se centra en el estudio, diseño, e implementación de las antenas reflectarray, a las que se introduce la tecnología de cristal líquido como elemento característico con el que se consigue reconfigurabilidad de haz de forma electrónica. Desde un punto de vista muy general, se puede describir un cristal líquido como un material cuya permitividad eléctrica es variable y controlada por una excitación externa, que generalmente suele corresponderse con un campo eléctrico quasi-estático (AC). Las antenas reflectarray de cristal líquido se han escogido como objeto de estudio por varias razones. La primera de ellas tiene que ver con las ventajas que los reflectarrays, y en especial aquellos realizados en configuración planar, proporcionan con respecto a otras antenas de alta ganancia como los reflectores o los “phased-arrays”. En los reflectarrays, la alimentación a través de una fuente primaria común (característica de reflectores) y el elevado número de grados de libertad de las celdas que los componen (característica de arrays) hacen que estas antenas puedan proporcionar prestaciones eléctricas iguales o mejores que las anteriores, a un coste más reducido y con estructuras de antena más compactas. La segunda razón radica en la flexibilidad que ofrece el cristal líquido a ser confinado y polarizado en recintos de geometría variada, como consecuencia de su fluidez (propiedad de los líquidos). Por ello, la tecnología de cristal líquido permite que el propio elemento reconfigurable en las celdas de reflectarray se adapte a la configuración planar de manera que en sí mismo, el cristal líquido sea una o varias de las capas características de esta configuración. Esto simplifica de forma drástica la estructura y la fabricación de este tipo de antenas, incluso si se comparan con reflectarrays reconfigurables basados en otras tecnologías como diodos, MEMS, etc. Por tanto, su coste y desarrollo es muy reducido, lo que hace que se puedan fabricar reflectarrays reconfigurables eléctricamente grandes, a bajo coste, y en producción elevada. Un ejemplo claro de una estructura similar, y que ha tenido éxito comercial, son las pantallas de cristal líquido. La tercera razón reside en el hecho de que el cristal líquido es, hasta la fecha, de las pocas tecnologías capaces de ofrecer reconfigurabilidad del haz a frecuencias superiores a 60 GHz. De hecho, el cristal líquido permite reconfigurabilidad en un amplio margen de frecuencias, que va desde DC a frecuencias del espectro visible, incluyendo las microondas y los THz. Otras tecnologías, como los materiales ferroeléctricos, el grafeno o la tecnología CMOS “on chip” permiten también conmutar el haz en estas frecuencias. Sin embargo, la tecnología CMOS tiene un elevado coste y actualmente está limitada a frecuencias inferiores a 150 GHz, y aunque los materiales ferroeléctricos o el grafeno puedan conmutar a frecuencias más altas y en un rango más amplio, tienen serias dificultades que los hacen aún inmaduros. En el caso de los materiales ferroeléctricos, los elevados voltajes para conmutar el material los hacen poco atractivos, mientras que en el caso del grafeno, su modelado aún está en discusión, y todavía no se han arrojado resultados experimentales que validen su idoneidad. Estas tres razones hacen que los reflectarrays basados en cristal líquido sean atractivos para multitud de aplicaciones de haz reconfigurable a frecuencias superiores a 60 GHz. Aplicaciones como radar de escaneo de imágenes de alta resolución, espectroscopia molecular, radiómetros para observación atmosférica, o comunicaciones inalámbricas de alta frecuencia (WiGig) son algunas de ellas. La tesis está estructurada en tres partes. En la primera de ellas se describen las características más comunes de los cristales líquidos, centrándonos en detalle en aquellas propiedades ofrecidas por este material en fase nemática. En concreto, se estudiará la anisotropía dieléctrica (Ae) de los cristales líquidos uniaxiales, que son los que se emplean en esta tesis, definida como la diferencia entre la permitividad paralela (£//) y la perpendicular (e±): Ae = e,, - e±. También se estudiará la variación de este parámetro (Ae) con la frecuencia, y el modelado electromagnético macroscópico más general que, extraído a partir de aquella, permite describir el cristal líquido para cada tensión de polarización en celdas de geometría planar. Este modelo es de suma importancia para garantizar precisión en el desfasaje proporcionado por las diferentes celdas reconfigurables para reflectarrays que se describirán en la siguiente parte de la tesis. La segunda parte de la tesis se centra en el diseño de celdas reflectarray resonantes basadas en cristal líquido. La razón por la que se escogen estos tipos de celdas reside en el hecho de que son las únicas capaces de proporcionar rangos de fase elevados ante la reducida anisotropía dieléctrica que ofrecen los cristales líquidos. El objetivo de esta parte trata, por tanto, de obtener estructuras de celdas reflectarray que sean capaces de proporcionar buenas prestaciones eléctricas a nivel de antena, mejorando sustancialmente las prestaciones de las celdas reportadas en el estado del arte, así como de desarrollar una herramienta de diseño general para aquellas. Para ello, se estudian las prestaciones eléctricas de diferentes tipos de elementos resonantes de cristal líquido que van, desde el más sencillo, que ha limitado el estado de la técnica hasta el desarrollo de esta tesis y que está formado por un sólo resonador, a elementos que constan de varios resonadores (multi-resonantes) y que pueden ser monocapa o multicapa. En un primer paso, el procedimiento de diseño de estas estructuras hace uso de un modelo convencional de cristal líquido que ha venido siendo usado en el estado del arte para este tipo de celdas, y que considera el cristal líquido como un material homogéneo e isótropo cuya permitividad varía entre (e/7) y (e±). Sin embargo, en esta parte de la tesis se demuestra que dicho modelado no es suficiente para describir de forma genérica el comportamiento del cristal líquido en las celdas tipo reflectarray. En la tesis se proponen procedimientos más exactos para el análisis y diseño basados en un modelo más general que define el cristal líquido como un material anisótropo e inhomogeneo en tres dimensiones, y se ha implementado una técnica que permite optimizar celdas multi-resonantes de forma eficiente para conseguir elevadas prestaciones en cuanto a ancho de banda, rango de fase, pérdidas, o sensibilidad al ángulo de incidencia. Los errores cometidos en el uso del modelado convencional a nivel de celda (amplitud y fase) se han analizado para varias geometrías, usando medidas de varios prototipos de antena que usan un cristal líquido real a frecuencias superiores a 100 GHz. Las medidas se han realizado en entorno periódico mediante un banco cuasi-óptico, que ha sido diseñado especialmente para este fin. Uno de estos prototipos se ha optimizado a 100 GHz para conseguir un ancho de banda relativamente elevado (10%), pérdidas reducidas, un rango de fase mayor de 360º, baja sensibilidad al ángulo de incidencia, y baja influencia de la inhomogeneidad transversal del cristal líquido en la celda. Estas prestaciones a nivel de celda superan de forma clara aquellas conseguidas por otros elementos que se han reportado en la literatura, de manera que dicho prototipo se ha usado en la última parte de la tesis para realizar diversas antenas de barrido. Finalmente, en esta parte se presenta una estrategia de caracterización de la anisotropía macroscópica a partir de medidas de los elementos de reflectarray diseñados en banco cuasi-óptico, obteniendo resultados tanto en las frecuencias de interés en RF como en AC, y comparándolas con aquellas obtenidas mediante otros métodos. La tercera parte de la tesis consiste en el estudio, diseño, fabricación y medida de antenas reconfigurables basadas en cristal líquido en configuraciones complejas. En reflectarrays pasivos, el procedimiento de diseño de la antena se limita únicamente al ajuste en cada celda de la antena de las dimensiones de las metalizaciones que se emplean para el control de fase, mediante procesos de optimización bien conocidos. Sin embargo, en el caso de reflectarrays reconfigurables basados en cristal líquido, resulta necesario un paso adicional, que consiste en calcular de forma adecuada las tensiones de control en cada celda del reflectarray para configurar la fase requerida en cada una de ellas, así como diseñar la estructura y los circuitos de control que permitan direccionar a cada elemento su tensión correspondiente. La síntesis de tensiones es por tanto igual o más importante que el diseño de la geometría de las celdas, puesto que éstas son las que están directamente relacionadas con la fase. En el estado del arte, existen varias estrategias de síntesis de tensiones que se basan en la caracterización experimental de la curva de fase respecto al voltaje. Sin embargo, esta caracterización sólo puede hacerse a un solo ángulo de incidencia y para unas determinadas dimensiones de celda, lo que produce que las tensiones sintetizadas sean diferentes de las adecuadas, y en definitiva que se alcancen errores de fase mayores de 70º. De esta forma, hasta la fecha, las prestaciones a nivel de antena que se han conseguido son reducidas en cuanto a ancho de banda, rango de escaneo o nivel de lóbulos secundarios. En esta última parte de la tesis, se introduce una nueva estrategia de síntesis de tensiones que es capaz de predecir mediante simulaciones, y con alta precisión, las tensiones que deben introducirse en cada celda teniendo en cuenta su ángulo de incidencia, sus dimensiones, la frecuencia, así como la señal de polarización definida por su frecuencia y forma de onda AC. Esta estrategia se basa en modelar cada uno de los estados de permitividad del cristal líquido como un sustrato anisótropo con inhomogeneidad longitudinal (1D), o en ciertos casos, como un tensor equivalente homogéneo. La precisión de ambos modelos electromagnéticos también se discute. Con el objetivo de obtener una herramienta eficiente de cálculo de tensiones, también se ha escrito e implementado una herramienta de análisis basada en el Método de los Momentos en el Dominio Espectral (SD-MoM) para sustratos estratificados anisótropos, que se usa en cada iteración del procedimiento de síntesis para analizar cada una de las celdas de la antena. La síntesis de tensiones se ha diseñado además para reducir al máximo el efecto del rizado de amplitud en el diagrama de radiación, que es característico en los reflectarrays que están formados por celdas con pérdidas elevadas, lo que en sí, supone un avance adicional para la obtención de mejores prestaciones de antena. Para el cálculo de los diagramas de radiación empleados en el procedimiento de síntesis, se asume un análisis elemento a elemento considerando periodicidad local, y se propone el uso de un método capaz de modelar el campo incidente de forma que se elimine la limitación de la periodicidad local en la excitación. Una vez definida la estrategia adecuada de cálculo de las tensiones a aplicar al cristal líquido en cada celda, la estructura de direccionamiento de las mismas en la antena, y diseñados los circuitos de control, se diseñan, fabrican y miden dos prototipos diferentes de antena de barrido electrónico a 100 GHz usando las celdas anteriormente presentadas. El primero de estos prototipos es un reflectarray en configuración “single offset” con capacidad de escaneo en un plano (elevación o azimut). Aunque previamente se realizan diseños de antenas de barrido en 2D a varias frecuencias en el rango de milimétricas y sub-milimétricas, y se proponen ciertas estrategias de direccionamiento que permiten conseguir este objetivo, se desarrolla el prototipo con direccionamiento en una dimensión con el fin de reducir el número de controles y posibles errores de fabricación, y así también validar la herramienta de diseño. Para un tamaño medio de apertura (con un numero de filas y columnas entre 30 y 50 elementos, lo que significa un reflectarray con un número de elementos superior a 900), la configuración “single offset” proporciona rangos de escaneo elevados, y ganancias que pueden oscilar entre los 20 y 30 dBi. En concreto, el prototipo medido proporciona un haz de barrido en un rango angular de 55º, en el que el nivel de lóbulos secundarios (SLL) permanece mejor de -13 dB en un ancho de banda de un 8%. La ganancia máxima es de 19.4 dBi. Estas prestaciones superan de forma clara aquellas conseguidas por otros autores. El segundo prototipo se corresponde con una antena de doble reflector que usa el reflectarray de cristal líquido como sub-reflector para escanear el haz en un plano (elevación o azimut). El objetivo básico de esta geometría es obtener mayores ganancias que en el reflectarray “single offset” con una estructura más compacta, aunque a expensas de reducir el rango de barrido. En concreto, se obtiene una ganancia máxima de 35 dBi, y un rango de barrido de 12º. Los procedimientos de síntesis de tensiones y de diseño de las estructuras de las celdas forman, en su conjunto, una herramienta completa de diseño precisa y eficiente de antenas reflectarray reconfigurables basados en cristales líquidos. Dicha herramienta se ha validado mediante el diseño, la fabricación y la medida de los prototipos anteriormente citados a 100 GHz, que consiguen algo nunca alcanzado anteriormente en la investigación de este tipo de antenas: unas prestaciones competitivas y una predicción excelente de los resultados. El procedimiento es general, y por tanto se puede usar a cualquier frecuencia en la que el cristal líquido ofrezca anisotropía dieléctrica, incluidos los THz. Los prototipos desarrollados en esta tesis doctoral suponen también unas de las primeras antenas de barrido real a frecuencias superiores a 100 GHz. En concreto, la antena de doble reflector para escaneo de haz es la primera antena reconfigurable electrónicamente a frecuencias superiores a 60 GHz que superan los 25 dBi de ganancia, siendo a su vez la primera antena de doble reflector que contiene un reflectarray reconfigurable como sub-reflector. Finalmente, se proponen ciertas mejoras que aún deben se deben realizar para hacer que estas antenas puedan ser un producto completamente desarrollado y competitivo en el mercado. ABSTRACT The work presented in this thesis is focused on the development of electronically reconfigurable antennas that are able to provide competitive electrical performance to the increasingly common applications operating at frequencies above 60 GHz. Specifically, this thesis presents the study, design, and implementation of reflectarray antennas, which incorporate liquid crystal (LC) materials to scan or reconfigure the beam electronically. From a general point of view, a liquid crystal can be defined as a material whose dielectric permittivity is variable and can be controlled with an external excitation, which usually corresponds with a quasi-static electric field (AC). By changing the dielectric permittivity at each cell that makes up the reflectarray, the phase shift on the aperture is controlled, so that a prescribed radiation pattern can be configured. Liquid Crystal-based reflectarrays have been chosen for several reasons. The first has to do with the advantages provided by the reflectarray antenna with respect to other high gain antennas, such as reflectors or phased arrays. The RF feeding in reflectarrays is achieved by using a common primary source (as in reflectors). This arrangement and the large number of degrees of freedom provided by the cells that make up the reflectarray (as in arrays), allow these antennas to provide a similar or even better electrical performance than other low profile antennas (reflectors and arrays), but assuming a more reduced cost and compactness. The second reason is the flexibility of the liquid crystal to be confined in an arbitrary geometry due to its fluidity (property of liquids). Therefore, the liquid crystal is able to adapt to a planar geometry so that it is one or more of the typical layers of this configuration. This simplifies drastically both the structure and manufacture of this type of antenna, even when compared with reconfigurable reflectarrays based on other technologies, such as diodes MEMS, etc. Therefore, the cost of developing this type of antenna is very small, which means that electrically large reconfigurable reflectarrays could be manufactured assuming low cost and greater productions. A paradigmatic example of a similar structure is the liquid crystal panel, which has already been commercialized successfully. The third reason lies in the fact that, at present, the liquid crystal is one of the few technologies capable of providing switching capabilities at frequencies above 60 GHz. In fact, the liquid crystal allows its permittivity to be switched in a wide range of frequencies, which are from DC to the visible spectrum, including microwaves and THz. Other technologies, such as ferroelectric materials, graphene or CMOS "on chip" technology also allow the beam to be switched at these frequencies. However, CMOS technology is expensive and is currently limited to frequencies below 150 GHz, and although ferroelectric materials or graphene can switch at higher frequencies and in a wider range, they have serious difficulties that make them immature. Ferroelectric materials involve the use of very high voltages to switch the material, making them unattractive, whereas the electromagnetic modelling of the graphene is still under discussion, so that the experimental results of devices based on this latter technology have not been reported yet. These three reasons make LC-based reflectarrays attractive for many applications that involve the use of electronically reconfigurable beams at frequencies beyond 60 GHz. Applications such as high resolution imaging radars, molecular spectroscopy, radiometers for atmospheric observation, or high frequency wireless communications (WiGig) are just some of them. This thesis is divided into three parts. In the first part, the most common properties of the liquid crystal materials are described, especially those exhibited in the nematic phase. The study is focused on the dielectric anisotropy (Ac) of uniaxial liquid crystals, which is defined as the difference between the parallel (e/7) and perpendicular (e±) permittivities: Ae = e,, - e±. This parameter allows the permittivity of a LC confined in an arbitrary volume at a certain biasing voltage to be described by solving a variational problem that involves both the electrostatic and elastic energies. Thus, the frequency dependence of (Ae) is also described and characterised. Note that an appropriate LC modelling is quite important to ensure enough accuracy in the phase shift provided by each cell that makes up the reflectarray, and therefore to achieve a good electrical performance at the antenna level. The second part of the thesis is focused on the design of resonant reflectarray cells based on liquid crystal. The reason why resonant cells have been chosen lies in the fact that they are able to provide enough phase range using the values of the dielectric anisotropy of the liquid crystals, which are typically small. Thus, the aim of this part is to investigate several reflectarray cell architectures capable of providing good electrical performance at the antenna level, which significantly improve the electrical performance of the cells reported in the literature. Similarly, another of the objectives is to develop a general tool to design these cells. To fulfill these objectives, the electrical yields of different types of resonant reflectarray elements are investigated, beginning from the simplest, which is made up of a single resonator and limits the state of the art. To overcome the electrical limitations of the single resonant cell, several elements consisting of multiple resonators are considered, which can be single-layer or multilayer. In a first step, the design procedure of these structures makes use of a conventional electromagnetic model which has been used in the literature, which considers that the liquid crystal behaves as homogeneous and isotropic materials whose permittivity varies between (e/7) y (e±). However, in this part of the thesis it is shown that the conventional modelling is not enough to describe the physical behaviour of the liquid crystal in reflectarray cells accurately. Therefore, a more accurate analysis and design procedure based on a more general model is proposed and developed, which defines the liquid crystal as an anisotropic three-dimensional inhomogeneous material. The design procedure is able to optimize multi-resonant cells efficiently to achieve good electrical performance in terms of bandwidth, phase range, losses, or sensitivity to the angle of incidence. The errors made when the conventional modelling (amplitude and phase) is considered have been also analysed for various cell geometries, by using measured results from several antenna prototypes made up of real liquid crystals at frequencies above 100 GHz. The measurements have been performed in a periodic environment using a quasi-optical bench, which has been designed especially for this purpose. One of these prototypes has been optimized to achieve a relatively large bandwidth (10%) at 100 GHz, low losses, a phase range of more than 360º, a low sensitivity to angle of incidence, and a low influence of the transversal inhomogeneity of the liquid crystal in the cell. The electrical yields of this prototype at the cell level improve those achieved by other elements reported in the literature, so that this prototype has been used in the last part of the thesis to perform several complete antennas for beam scanning applications. Finally, in this second part of the thesis, a novel strategy to characterise the macroscopic anisotropy using reflectarray cells is presented. The results in both RF and AC frequencies are compared with those obtained by other methods. The third part of the thesis consists on the study, design, manufacture and testing of LCbased reflectarray antennas in complex configurations. Note that the design procedure of a passive reflectarray antenna just consists on finding out the dimensions of the metallisations of each cell (which are used for phase control), using well-known optimization processes. However, in the case of reconfigurable reflectarrays based on liquid crystals, an additional step must be taken into account, which consists of accurately calculating the control voltages to be applied to each cell to configure the required phase-shift distribution on the surface of the antenna. Similarly, the structure to address the voltages at each cell and the control circuitry must be also considered. Therefore, the voltage synthesis is even more important than the design of the cell geometries (dimensions), since the voltages are directly related to the phase-shift. Several voltage synthesis procedures have been proposed in the state of the art, which are based on the experimental characterization of the phase/voltage curve. However, this characterization can be only carried out at a single angle of incidence and at certain cell dimensions, so that the synthesized voltages are different from those needed, thus giving rise to phase errors of more than 70°. Thus, the electrical yields of the LCreflectarrays reported in the literature are limited in terms of bandwidth, scanning range or side lobes level. In this last part of the thesis, a new voltage synthesis procedure has been defined and developed, which allows the required voltage to be calculated at each cell using simulations that take into account the particular dimensions of the cells, their angles of incidence, the frequency, and the AC biasing signal (frequency and waveform). The strategy is based on the modelling of each one of the permittivity states of the liquid crystal as an anisotropic substrate with longitudinal inhomogeneity (1D), or in certain cases, as an equivalent homogeneous tensor. The accuracy of both electromagnetic models is also discussed. The phase errors made by using the proposed voltage synthesis are better than 7º. In order to obtain an efficient tool to analyse and design the reflectarray, an electromagnetic analysis tool based on the Method of Moments in the spectral domain (SD-MoM) has also written and developed for anisotropic stratified media, which is used at each iteration of the voltage synthesis procedure. The voltage synthesis is also designed to minimize the effect of amplitude ripple on the radiation pattern, which is typical of reflectarrays made up of cells exhibiting high losses and represents a further advance in achieving a better antenna performance. To calculate the radiation patterns used in the synthesis procedure, an element-by-element analysis is assumed, which considers the local periodicity approach. Under this consideration, the use of a novel method is proposed, which avoids the limitation that the local periodicity imposes on the excitation. Once the appropriate strategy to calculate the voltages to be applied at each cell is developed, and once it is designed and manufactured both the structure to address the voltages to the antenna and the control circuits, two complete LC-based reflectarray antennas that operate at 100 GHz have been designed, manufactured and tested using the previously presented cells. The first prototype consists of a single offset reflectarray with beam scanning capabilities on one plane (elevation and azimuth). Although several LC-reflectarray antennas that provide 2-D scanning capabilities are also designed, and certain strategies to achieve the 2-D addressing of the voltage are proposed, the manufactured prototype addresses the voltages in one dimension in order to reduce the number of controls and manufacturing errors, and thereby validating the design tool. For an average aperture size (with a number of rows and columns of between 30 and 50 elements, which means a reflectarray with more than 900 cells), the single offset configuration provides an antenna gain of between 20 and 30 dBi and a large scanning range. The prototype tested at 100 GHz exhibits an electronically scanned beam in an angular range of 55º and 8% of bandwidth, in which the side lobe level (SLL) remains better than -13 dB. The maximum gain is 19.4 dBi. The electrical performance of the antenna is clearly an improvement on those achieved by other authors in the state of the art. The second prototype corresponds to a dual reflector antenna with a liquid crystal-based reflectarray used as a sub-reflector for beam scanning in one plane (azimuth or elevation). The main objective is to obtain a higher gain than that provided by the single offset configuration, but using a more compact architecture. In this case, a maximum gain of 35 dBi is achieved, although at the expense of reducing the scanning range to 12°, which is inherent in this type of structure. As a general statement, the voltage synthesis and the design procedure of the cells, jointly make up a complete, accurate and efficient design tool of reconfigurable reflectarray antennas based on liquid crystals. The tool has been validated by testing the previously mentioned prototypes at 100 GHz, which achieve something never reached before for this type of antenna: a competitive electrical performance, and an excellent prediction of the results. The design procedure is general and therefore can be used at any frequency for which the liquid crystal exhibits dielectric anisotropy. The two prototypes designed, manufactured and tested in this thesis are also some of the first antennas that currently operate at frequencies above 100 GHz. In fact, the dual reflector antenna is the first electronically scanned dual reflector antenna at frequencies above 60 GHz (the operation frequency is 100 GHz) with a gain greater than 25 dBi, being in turn the first dual-reflector antenna with a real reconfigurable sub-reflectarray. Finally, some improvements that should be still investigated to make these antennas commercially competitive are proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente tesis revisa y analiza algunos aspectos fundamentales relativos al comportamiento de los sensores basados en resonadores piezoeléctricos TSM (Thickness Shear Mode), así como la aplicación de los mismos al estudio y caracterización de dos medios viscoelásticos de gran interés: los fluidos magnetoreológicos y los biofilms microbianos. El funcionamiento de estos sensores está basado en la medida de sus propiedades resonantes, las cuales varían al entrar en contacto con el material que se quiere analizar. Se ha realizado un análisis multifrecuencial, trabajando en varios modos de resonancia del transductor, en algunas aplicaciones incluso de forma simultánea (excitación pulsada). Se han revisado fenómenos como la presencia de microcontactos en la superficie del sensor y la resonancia de capas viscoelásticas de espesor finito, que pueden afectar a los sensores de cuarzo de manera contraria a lo que predice la teoría convencional (Sauerbrey y Kanazawa), pudiéndonos llevar a incrementos positivos de la frecuencia de resonancia. Además, se ha estudiado el efecto de una deposición no uniforme sobre el resonador piezoeléctrico. Para ello se han medido deposiciones de poliuretano, modelándose la respuesta del resonador con estas deposiciones mediante FEM. El modelo numérico permite estudiar el comportamiento del resonador al modificar distintas variables geométricas (espesor, superficie, no uniformidad y zona de deposición) de la capa depositada. Se ha demostrado que para espesores de entre un cuarto y media longitud de onda aproximadamente, una capa viscoelástica no uniforme sobre la superficie del sensor, amplifica el incremento positivo del desplazamiento de la frecuencia de resonancia en relación con una capa uniforme. Se ha analizado también el patrón geométrico de la sensibilidad del sensor, siendo también no uniforme sobre su superficie. Se han aplicado sensores TSM para estudiar los cambios viscoelásticos que se producen en varios fluidos magneto-reológicos (FMR) al aplicarles distintos esfuerzos de cizalla controlados por un reómetro. Se ha podido ver que existe una relación directa entre diversos parámetros reológicos obtenidos con el reómetro (fuerza normal, G’, G’’, velocidad de deformación, esfuerzo de cizalla…) y los parámetros acústicos, caracterizándose los FMR tanto en ausencia de campo magnético, como con campo magnético aplicado a distintas intensidades. Se han estudiado las ventajas que aporta esta técnica de medida sobre la técnica basada en un reómetro comercial, destacando que se consigue caracterizar con mayor detalle algunos aspectos relevantes del fluido como son la deposición de partículas (estabilidad del fluido), el proceso de ruptura de las estructuras formadas en los FMR tanto en presencia como en ausencia de campo magnético y la rigidez de los microcontactos que aparecen entre partículas y superficies. También se han utilizado sensores de cuarzo para monitorear en tiempo real la formación de biofilms de Staphylococcus epidermidis y Eschericia coli sobre los propios resonadores de cristal de cuarzo sin ningún tipo de recubrimiento, realizándose ensayos con cepas que presentan distinta capacidad de producir biofilm. Se mostró que, una vez que se ha producido una primera adhesión homogénea de las bacterias al sustrato, podemos considerar el biofilm como una capa semi-infinita, de la cual el sensor de cuarzo refleja las propiedades viscoelásticas de la región inmediatamente contigua al resonador, no siendo sensible a lo que sucede en estratos superiores del biofilm. Los experimentos han permitido caracterizar el módulo de rigidez complejo de los biofilms a varias frecuencias, mostrándose que el parámetro característico que indica la adhesión de un biofilm tanto en el caso de S. epidermidis como de E. coli, es el incremento de G’ (relacionado con la elasticidad o rigidez de la capa), el cual viene ligado a un incremento de la frecuencia de resonancia del sensor. ABSTRACT This thesis reviews and analyzes some key aspects of the behavior of sensors based on piezoelectric resonators TSM (Thickness Shear Mode) and their applications to the study and characterization in two viscoelastic media of great interest: magnetorheological fluids and microbial biofilms. The operation of these sensors is based on the analysis of their resonant properties that vary in contact with the material to be analyzed. We have made a multi-frequency analysis, working in several modes of resonance of the transducer, in some applications even simultaneously (by impulse excitation). We reviewed some phenomena as the presence of micro-contacts on the sensor surface and the resonance of viscoelastic layers of finite thickness, which can affect quartz sensors contrary to the conventional theory predictions (Sauerbrey and Kanazawa), leading to positive resonant frequency shifts. In addition, we studied the effect of non-uniform deposition on the piezoelectric resonator. Polyurethane stools have been measured, being the resonator response to these depositions modeled by FEM. The numerical model allows studying the behavior of the resonator when different geometric variables (thickness, surface non-uniformity and deposition zone) of the deposited layer are modified. It has been shown that for thicknesses between a quarter and a half of a wavelength approximately, non-uniform deposits on the sensor surface amplify the positive increase of the resonance frequency displacement compared to a uniform layer. The geometric pattern of the sensor sensitivity was also analyzed, being also non-uniform over its surface. TSM sensors have been applied to study the viscoelastic changes occurring in various magneto-rheological fluids (FMR) when subjected to different controlled shear stresses driven by a rheometer. It has been seen that there is a direct relationship between various rheological parameters obtained with the rheometer (normal force, G', G'', stress, shear rate ...) and the acoustic parameters, being the FMR characterized both in the absence of magnetic field, and when the magnetic field was applied at different intensities. We have studied the advantages of this technique over the characterization methods based on commercial rheometers, noting that TSM sensors are more sensitive to some relevant aspects of the fluid as the deposition of particles (fluid stability), the breaking process of the structures formed in the FMR both in the presence and absence of magnetic field, and the rigidity of the micro-contacts appearing between particles and surfaces. TSM sensors have also been used to monitor in real time the formation of biofilms of Staphylococcus epidermidis and Escherichia coli on the quartz crystal resonators themselves without any coating, performing tests with strains having different ability to produce biofilm. It was shown that, once a first homogeneous adhesion of bacteria was produced on the substrate, the biofilm can be considered as a semi-infinite layer and the quartz sensor reflects only the viscoelastic properties of the region immediately adjacent to the resonator, not being sensitive to what is happening in upper layers of the biofilm. The experiments allow the evaluation of the biofilm complex stiffness module at various frequencies, showing that the characteristic parameter that indicates the adhesion of a biofilm for the case of both S. epidermidis and E. coli, is an increased G' (related to the elasticity or stiffness of the layer), which is linked to an increase in the resonance frequency of the sensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo de este proyecto es el estudio detallado y fabricación de los filtros de cavidades con resonadores helicoidales. Este proyecto está motivado por el hecho de que es una tecnología cada vez más presente en el mercado y su uso resulta muy ´útil en aplicaciones donde se requiere que los componentes sean de tamaño reducido. Esto se debe a que las cavidades helicoidales son de las que presentan menor tamaño para una frecuencia dada. La estructura del proyecto se va a dividir en tres grandes bloques. El primero es el estudio teórico de esta tecnología. En la introducción se verán los principales usos de estos dispositivos, dando ejemplos comerciales, para luego poder compararlos con el prototipo que se ha construido. A continuación, en los primeros capítulos, se detallará la geometría de los resonadores, las ecuaciones que deben aplicarse para calcular las dimensiones y los elementos de diseño. Se comentarán algunas modificaciones opcionales que se pueden aplicar al filtro en el caso de que se requieran especificaciones especiales para la aplicación para la que esté destinado el dispositivo. En segundo lugar se procederá a diseñar modelos de filtros helicoidales para distintas bandas de frecuencia, con el programa de diseño CST Microwave Studio. Estos serán ajustados y parametrizados con el fin de obtener unos requerimientos que serán fijados previamente. Y por ´ultimo se mostrará como ha sido el proceso de prototipado del filtro de tres cavidades para la banda de FM que se ha llevado a cabo y estarán plasmadas las medidas que se han realizado para determinar las características que tiene el prototipo. Este proyecto está planteado como un manual para que el interesado en la fabricación de este tipo de filtros pueda afrontar el diseño desde el inicio y ser capaz de construir un prototipo que cumpla con las características que sean requeridas. ABSTRACT. The main purpose of this project is the detailed study of helical resonator filters and their manufacturing. This technology is increasingly present in the market, and its use is very convenient in applications where it is required for the components to be of reduced size. This is due to helical resonators being smaller than conventional cavity filters for a given frequency. The projects structure will be divided into three sections. First, the theoretical study of this technology will be presented. In the introduction, the main uses of these devices will be shown and commercial examples will be given, which can then be compared with the built prototype. Afterwards, in the first chapters, the geometry of the resonators, the required equations to calculate their dimensions and the design elements will be detailed. Some optional modifications that can be applied to the filter in the case of special specifications will be discussed. Second, some models of helical filters will be designed for different frequency bands, using the design software CST Microwave Studio. These will be adjusted and parameterized in order to meet requirements that will be set previously. Finally, the development of the prototyping process of a three cavities filter for the FM band will be shown, and the measurements that were made to determine the prototypes features will be reflected. This project is designed as a handbook; the individual concerned in the manufacture of these filters should be able to follow the design process from the start and build a prototype that has the required characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hearing organ of the inner ear was the last of the paired sense organs of amniotes to undergo formative evolution. As a mechanical sensory organ, the inner-ear hearing organ's function depends highly on its physical structure. Comparative studies suggest that the hearing organ of the earliest amniote vertebrates was small and simple, but possessed hair cells with a cochlear amplifier mechanism, electrical frequency tuning, and incipient micromechanical tuning. The separation of the different groups of amniotes from the stem reptiles occurred relatively early, with the ancestors of the mammals branching off first, approximately 320 million years ago. The evolution of the hearing organ in the three major lines of the descendents of the stem reptiles (e.g., mammals, birds-crocodiles, and lizards-snakes) thus occurred independently over long periods of time. Dramatic and parallel improvements in the middle ear initiated papillar elongation in all lineages, accompanied by increased numbers of sensory cells with enhanced micromechanical tuning and group-specific hair-cell specializations that resulted in unique morphological configurations. This review aims not only to compare structure and function across classification boundaries (the comparative approach), but also to assess how and to what extent fundamental mechanisms were influenced by selection pressures in times past (the phylogenetic viewpoint).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review the mechanical origin of auditory-nerve excitation, focusing on comparisons of the magnitudes and phases of basilar-membrane (BM) vibrations and auditory-nerve fiber responses to tones at a basal site of the chinchilla cochlea with characteristic frequency ≈ 9 kHz located 3.5 mm from the oval window. At this location, characteristic frequency thresholds of fibers with high spontaneous activity correspond to magnitudes of BM displacement or velocity in the order of 1 nm or 50 μm/s. Over a wide range of stimulus frequencies, neural thresholds are not determined solely by BM displacement but rather by a function of both displacement and velocity. Near-threshold, auditory-nerve responses to low-frequency tones are synchronous with peak BM velocity toward scala tympani but at 80–90 dB sound pressure level (in decibels relative to 20 microPascals) and at 100–110 dB sound pressure level responses undergo two large phase shifts approaching 180°. These drastic phase changes have no counterparts in BM vibrations. Thus, although at threshold levels the encoding of BM vibrations into spike trains appears to involve only relatively minor signal transformations, the polarity of auditory-nerve responses does not conform with traditional views of how BM vibrations are transmitted to the inner hair cells. The response polarity at threshold levels, as well as the intensity-dependent phase changes, apparently reflect micromechanical interactions between the organ of Corti, the tectorial membrane and the subtectorial fluid, and/or electrical and synaptic processes at the inner hair cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lateral cyclic loaded structures in granular soils can lead to an accumulation of irreversible strains by changing their mechanical response (densification) and forming a closed convective cell in the upper layer of the bedding. In the present thesis the convective cell dimension, formation and grain migration inside this closed volume have been studied and presented in relation to structural stiffness and different loads. This relation was experimentally investigated by applying a cyclic lateral force to a scaled flexible vertical element embedded in dry granular soil. The model was monitored with a camera in order to derive the displacement field by means of the PIV technique. Modelling large soil deformation turns out to be difficult, using mesh-based methods. Consequently, a mesh-free approach (DEM) was chosen in order to investigate the granular flow with the aim of extracting interesting micromechanical information. In both the numerical and experimental analyses the effect of different loading magnitudes and different dimensions of the vertical element were considered. The main results regarded the different development, shape and dimensions of the convection cell and the surface settlements. Moreover, the Discrete Element Method has proven to give satisfactory results in the modelling of large deformation phenomena such as the ratcheting convective cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new method of modeling imaging of laser beams in the presence of diffraction. Our method is based on the concept of first orthogonally expanding the resultant diffraction field (that would have otherwise been obtained by the laborious application of the Huygens diffraction principle) and then representing it by an effective multimodal laser beam with different beam parameters. We show not only that the process of obtaining the new beam parameters is straightforward but also that it permits a different interpretation of the diffraction-caused focal shift in laser beams. All of the criteria that we have used to determine the minimum number of higher-order modes needed to accurately represent the diffraction field show that the mode-expansion method is numerically efficient. Finally, the characteristics of the mode-expansion method are such that it allows modeling of a vast array of diffraction problems, regardless of the characteristics of the incident laser beam, the diffracting element, or the observation plane. (C) 2005 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radio-frequency ( RF) coils are designed such that they induce homogeneous magnetic fields within some region of interest within a magnetic resonance imaging ( MRI) scanner. Loading the scanner with a patient disrupts the homogeneity of these fields and can lead to a considerable degradation of the quality of the acquired image. In this paper, an inverse method is presented for designing RF coils, in which the presence of a load ( patient) within the MRI scanner is accounted for in the model. To approximate the finite length of the coil, a Fourier series expansion is considered for the coil current density and for the induced fields. Regularization is used to solve this ill-conditioned inverse problem for the unknown Fourier coefficients. That is, the error between the induced and homogeneous target fields is minimized along with an additional constraint, chosen in this paper to represent the curvature of the coil windings. Smooth winding patterns are obtained for both unloaded and loaded coils. RF fields with a high level of homogeneity are obtained in the unloaded case and a limit to the level of homogeneity attainable is observed in the loaded case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Finite-element simulations are used to obtain many thousands of yield points for porous materials with arbitrary void-volume fractions with spherical voids arranged in simple cubic, body-centred cubic and face-centred cubic three-dimensional arrays. Multi-axial stress states are explored. We show that the data may be fitted by a yield function which is similar to the Gurson-Tvergaard-Needleman (GTN) form, but which also depends on the determinant of the stress tensor, and all additional parameters may be expressed in terms of standard GTN-like parameters. The dependence of these parameters on the void-volume fraction is found. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The following topics were dealt with: semiconductor growth (MBE, PECVD, MOCVD, MOVPE) and characterizations; high-electron mobility transistors (HEMTs); microcavity organic light emitting diode (MOLED); semiconductor superlattices; photodiode arrays; MEMS structures; lithography;semiconductor lasers; semiconductor optical amplifiers; surface treatment and annealing

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physical implementation of quantum information processing is one of the major challenges of current research. In the last few years, several theoretical proposals and experimental demonstrations on a small number of qubits have been carried out, but a quantum computing architecture that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is still lacking. In particular, a major ultimate objective is the construction of quantum simulators, yielding massively increased computational power in simulating quantum systems. Here we investigate promising routes towards the actual realization of a quantum computer, based on spin systems. The first one employs molecular nanomagnets with a doublet ground state to encode each qubit and exploits the wide chemical tunability of these systems to obtain the proper topology of inter-qubit interactions. Indeed, recent advances in coordination chemistry allow us to arrange these qubits in chains, with tailored interactions mediated by magnetic linkers. These act as switches of the effective qubit-qubit coupling, thus enabling the implementation of one- and two-qubit gates. Molecular qubits can be controlled either by uniform magnetic pulses, either by local electric fields. We introduce here two different schemes for quantum information processing with either global or local control of the inter-qubit interaction and demonstrate the high performance of these platforms by simulating the system time evolution with state-of-the-art parameters. The second architecture we propose is based on a hybrid spin-photon qubit encoding, which exploits the best characteristic of photons, whose mobility is exploited to efficiently establish long-range entanglement, and spin systems, which ensure long coherence times. The setup consists of spin ensembles coherently coupled to single photons within superconducting coplanar waveguide resonators. The tunability of the resonators frequency is exploited as the only manipulation tool to implement a universal set of quantum gates, by bringing the photons into/out of resonance with the spin transition. The time evolution of the system subject to the pulse sequence used to implement complex quantum algorithms has been simulated by numerically integrating the master equation for the system density matrix, thus including the harmful effects of decoherence. Finally a scheme to overcome the leakage of information due to inhomogeneous broadening of the spin ensemble is pointed out. Both the proposed setups are based on state-of-the-art technological achievements. By extensive numerical experiments we show that their performance is remarkably good, even for the implementation of long sequences of gates used to simulate interesting physical models. Therefore, the here examined systems are really promising buildingblocks of future scalable architectures and can be used for proof-of-principle experiments of quantum information processing and quantum simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of the fiber geometry on the point-by-point inscription of fiber Bragg gratings using a femtosecond laser is highlighted. Fiber Bragg gratings with high spectral quality and strong first-order Bragg resonances within the C-band are achieved by optimizing the inscription process. Large birefringence (1.2×10-4) and high degree of polarizationdependent index modulation are observed in these gratings. Potential applications of these gratings in resonators are further illustrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The consequences of fabricating Bragg gratings in various fibres, with or without hydrogen loading, and with varying laser power levels are explored. Three new techniques for fabricating chirped gratings are presented. Beams with dissimilar wavefront curvatures are interfered to give chirped gratings. With the same aim techniques of writing gratings on tapered fibres and on deformed fibres are also covered. With these techniques, a wide variety of gratings has been fabricated from the 'superbroad' (with bandwidths of up to 180 nm), small to medium bandwidth gratings with linear chirp profiles and quadratic chirped gratings. It is demonstrated that chirped grating can be concatenated to form all-fibre Fabry-Perot and Moiré resonators. These are further concatenated with chirped gratings to produce filters with narrow passbands and very broad stopbands. A number of other applications are also addressed. The use of chirped fibre gratings for dispersion compensation and femtosecond chirped pulse amplification is demonstrated. Chirped gratings are used as dispersive elements in modelocked fibre lasers producing ultrashort pulses. A chirped fibre grating Fabry-Perot transmission filter is used in a continuous wave laser that exhibits eleven simultaneously lasing wavelengths. Finally, the use of grating-coupler devices as variable reflectivity mirrors for laser optimisation and gain clamping is considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of more realistic constitutive models for granular media, such as sand, requires ingredients which take into account the internal micro-mechanical response to deformation. Unfortunately, at present, very little is known about these mechanisms and therefore it is instructive to find out more about the internal nature of granular samples by conducting suitable tests. In contrast to physical testing the method of investigation used in this study employs the Distinct Element Method. This is a computer based, iterative, time-dependent technique that allows the deformation of granular assemblies to be numerically simulated. By making assumptions regarding contact stiffnesses each individual contact force can be measured and by resolution particle centroid forces can be calculated. Then by dividing particle forces by their respective mass, particle centroid velocities and displacements are obtained by numerical integration. The Distinct Element Method is incorporated into a computer program 'Ball'. This program is effectively a numerical apparatus which forms a logical housing for this method and allows data input and output, and also provides testing control. By using this numerical apparatus tests have been carried out on disc assemblies and many new interesting observations regarding the micromechanical behaviour are revealed. In order to relate the observed microscopic mechanisms of deformation to the flow of the granular system two separate approaches have been used. Firstly a constitutive model has been developed which describes the yield function, flow rule and translation rule for regular assemblies of spheres and discs when subjected to coaxial deformation. Secondly statistical analyses have been carried out using data which was extracted from the simulation tests. These analyses define and quantify granular structure and then show how the force and velocity distributions use the structure to produce the corresponding stress and strain-rate tensors.