823 resultados para MECHANICAL-PROPERTIES
Resumo:
The electronic structure of the wurtzite-type phase of aluminum nitride has been investigated by means of periodic ab initio Hartree-Fock calculations. The binding energy, lattice parameters (a,c), and the internal coordinate (u) have been calculated. All structural parameters are in excellent agreement with the experimental data. The electronic structure and bonding in AlN are analyzed by means of density-of-states projections and electron-density maps. The calculated values of the bulk modulus, its pressure derivative, the optical-phonon frequencies at the center of the Brillouin zone, and the full set of elastic constants are in good agreement with the experimental data.
Resumo:
The electronic structure of the wurtzite-type phase of aluminum nitride has been investigated by means of periodic ab initio Hartree-Fock calculations. The binding energy, lattice parameters (a,c), and the internal coordinate (u) have been calculated. All structural parameters are in excellent agreement with the experimental data. The electronic structure and bonding in AlN are analyzed by means of density-of-states projections and electron-density maps. The calculated values of the bulk modulus, its pressure derivative, the optical-phonon frequencies at the center of the Brillouin zone, and the full set of elastic constants are in good agreement with the experimental data.
Resumo:
The influence of incorporating 5-tert-butyl isophthalic units (tBI) in the polymer chain of poly(ethylene terephthalate) (PET) on the crystallization behavior, crystal structure, and tensile and gas transport properties of this polyester was evaluated. Random poly(ethyleneterephthalate-co-5-tert-butyl isophthalate) copolyesters (PETtBI) containing between 5 and 40 mol% of tBI units were examined. Isothermal crystallization studies were performed on amorphous glassy films at 120 8C and on molten samples at 200 8C by means of differential scanning calorimetry. Furthermore, the non-isothermal crystallization behavior of the copolyesters was investigated. It was observed that both crystallinity and crystallization rate of the PETtBI copolyesters tend to decrease largely with the comonomeric content, except for the copolymer containing 5 mol% of tBI units, which crystallized faster than PET. Fiber X-ray diffraction patterns of the semicrystalline PETtBI copolyesters proved that they adopt the same triclinic crystal structure as PET with the comonomeric units being excluded from the crystalline phase. Although PETtBI copolyesters became brittle for higher contents in tBI, the tensile modulus and strength of PET were barely affected by copolymerization. The ncorporation of tBI units slightly increased the permeability of PET, but copolymers containing up to 20 mol% of the comonomeric units were still able to present barrier properties.
Resumo:
A series of poly(butylene terephthalate) copolyesters containing 5-tert-butyl isophthalate units up to 50%-mole, as well as the homopolyester entirely made of these units, were prepared by polycondensation from the melt. The microstructure of the copolymers was determined by NMR to be at random for the whole range of compositions. The effect exerted by the 5-tert-butyl isophthalate units on thermal, tensile and gas transport properties was evaluated. Both Tm and crystallinity as well as the mechanical moduli were found to decrease steadily with copolymerization whereas Tg increased and the polyesters became more brittle. Permeability and solubility sligthly increased also with the content in substituted units whereas the diffusion coefficient remained practically constant. For the homopolyester poly(5-tert-butyl isophthalate), all these properties were found to deviate significantly from the general trend displayed by copolyesters suggesting that a different chain mode of packing in the amorphous phase is likely adopted in this case.
Resumo:
The mechanical properties of biological cells have long been considered as inherent markers of biological function and disease. However, the screening and active sorting of heterogeneous populations based on serial single-cell mechanical measurements has not been demonstrated. Here we present a novel monolithic glass chip for combined fluorescence detection and mechanical phenotyping using an optical stretcher. A new design and manufacturing process, involving the bonding of two asymmetrically etched glass plates, combines exact optical fiber alignment, low laser damage threshold and high imaging quality with the possibility of several microfluidic inlet and outlet channels. We show the utility of such a custombuilt optical stretcher glass chip by measuring and sorting single cells in a heterogeneous population based on their different mechanical properties and verify sorting accuracy by simultaneous fluorescence detection. This offers new possibilities of exact characterization and sorting of small populations based on rheological properties for biological and biomedical applications.
Resumo:
The 'Niagara Rosada' grape is the main Brazilian table grape belonging to the Labrusca family. It develops medium, cylindrical and compact bunches with berries presenting a pinkish skin and a foxy flavor that is valued in the Brazilian market. These berries are tender and have a pedicel-berry connection provided by the vascular bundles and surrounding skin. This cultivar is very susceptible to berry drop mainly caused by vibration and senescence. The objective of this study was to evaluate the temporal mechanical behavior of the pedicel-berry detachment, using resistance indexes extracted from traction force-deformation curves. Test results showed two different detachment types. In the first one, which exhibited higher average resistance, a considerable portion of the vascular bundle came out attached to the pedicel and in the second type; the vascular bundle was retained inside the berry. The proposed indexes based on maximum detachment force, force at 0.2; 0.5; 1.0 and 1.2 mm, and maximum force to corresponding deformation ratio did not discriminate the senescence of the berry.
Effect of particle morphology on the mechanical and thermo-mechanical behavior of polymer composites
Resumo:
Fiber reinforced polymer composites have been used in many applications, such as in automobile, aerospace and naval industries, due basically to their high strength-to-weight and modulus-to-weight, among other properties. Even though particles are usually not able to lead to the level of reinforcement of fibers, particle reinforced polymer composites have been proposed for many new applications due to their low cost, easy fabrication and isotropic properties. In this work, polymer composites were prepared by incorporating glass particles of different morphologies on poly(aryl sulfones) matrices. Particles with aspect ratios equal to 1, 2.5 and 10 were used. The prepared composites were characterized using electron microscopy and thermal analysis. Mechanical properties of the composites were evaluated using a four-point bending test. The thermo-mechanical behavior of the obtained composites was also investigated. The results showed that the morphology of the particles alter significantly the mechanical properties of composites. Particles with larger values of aspect ratio led to large elastic modulus but low levels of strain at failure. This result was explained by modeling the thermo-mechanical behavior of the composites using a viscoelastic model. Parameters of the model, obtained from a Cole-Cole type of plot, demonstrated that interactions at the polymer-reinforcing agent interface were higher for composites with large aspect ratio particles. Higher levels of interactions at interfaces can lead to higher degrees of stress transfer and, consequently, to composites with large elastic modulus, as experimentally observed.
Resumo:
The objective of this work was to study the effects of partial removal of wood hemicelluloses on the properties of kraft pulp.The work was conducted by extracting hemicelluloses (1) by a softwood chip pretreatment process prior to kraft pulping, (2) by alkaline extraction from bleached birch kraft pulp, and (3) by enzymatic treatment, xylanase treatment in particular, of bleached birch kraft pulp. The qualitative and quantitative changes in fibers and paper properties were evaluated. In addition, the applicability of the extraction concepts and hemicellulose-extracted birch kraft pulp as a raw material in papermaking was evaluated in a pilot-scale papermaking environment. The results showed that each examined hemicellulose extraction method has its characteristic effects on fiber properties, seen as differences in both the physical and chemical nature of the fibers. A prehydrolysis process prior to the kraft pulping process offered reductions in cooking time, bleaching chemical consumption and produced fibers with low hemicellulose content that are more susceptible to mechanically induced damages and dislocations. Softwood chip pretreatment for hemicellulose recovery prior to cooking, whether acidic or alkaline, had an impact on the physical properties of the non-refined and refined pulp. In addition, all the pretreated pulps exhibited slower beating response than the unhydrolyzed reference pulp. Both alkaline extraction and enzymatic (xylanase) treatment of bleached birch kraft pulp fibers indicated very selective hemicellulose removal, particularly xylan removal. Furthermore, these two hemicellulose-extracted birch kraft pulps were utilized in a pilot-scale papermaking environment in order to evaluate the upscalability of the extraction concepts. Investigations made using pilot paper machine trials revealed that some amount of alkalineextracted birch kraft pulp, with a 24.9% reduction in the total amount of xylan, could be used in the papermaking stock as a mixture with non-extracted pulp when producing 75 g/m2 paper. For xylanase-treated fibers there were no reductions in the mechanical properties of the 180 g/m2 paper produced compared to paper made from the control pulp, although there was a 14.2% reduction in the total amount of xylan in the xylanase-treated pulp compared to the control birch kraft pulp. This work emphasized the importance of the hemicellulose extraction method in providing new solutions to create functional fibers and in providing a valuable hemicellulose co-product stream. The hemicellulose removal concept therefore plays an important role in the integrated forest biorefinery scenario, where the target is to the co-production of hemicellulose-extracted pulp and hemicellulose-based chemicals or fuels.
Resumo:
The viscoelastic properties of edible films can provide information at the structural level of the biopolymers used. The objective of this work was to test three simple models of linear viscoelastic theory (Maxwell, Generalized Maxwell with two units in parallel, and Burgers) using the results of stress relaxation tests in edible films of myofibrillar proteins of Nile Tilapia. The films were elaborated according to a casting technique and pre-conditioned at 58% relative humidity and 22ºC for 4 days. The testing sample (15mm x 118mm) was submitted to tests of stress relaxation in an equipment of physical measurements, TA.XT2i. The deformation, imposed to the sample, was 1%, guaranteeing the permanency in the domain of the linear viscoelasticity. The models were fitted to experimental data (stress x time) by nonlinear regression. The Generalized Maxwell model with two units in parallel and the Burgers model represented the relaxation curves of stress satisfactorily. The viscoelastic properties varied in a way that they were less dependent on the thickness of the films.
Resumo:
The development of processed foods requires the understanding of the phenomena that dictate the ingredient interactions normally used in food formulations, as well as the effects of the numerous operations involved in the processing of the final product. In ice creams, sugars are responsible for taste, but they also affect the freezing behavior and viscosity of processed mixes. Components such as fats influence mechanical properties, melting resistance, and palatability of final products. The objective was to study the technological effects of different sugars and fats on the structure of ice cream formulations. Fructose syrup was used as a substitute for glucose syrup in blends with sucrose, and palm fat was employed as an alternative to hydrogenated vegetable fat. The analysis of variance showed significant differences in chemical compositions. Hygroscopicity of fructose syrup increased the solids content in the formulations. Melting rate and overrun were higher in products added with this sugar. Palm fat caused changes in melting ranges of formulations, and higher melting rate was observed in the combination of palm fat and fructose syrup.
Resumo:
Abstract Biodegradable films blends made of safflower oil nutraceutical capsules waste corn starch (20:4, 30:4, 40:4 and 50:4) were prepared. The objective of this study was to evaluate the influence of addition of different concentrations of safflower oil nutraceutical capsule waste in the mechanical properties (tensile strength, elongation at break, Young’s modulus) and thickness of corn starch films. A decrease in tensile strength and Young’s modulus and an increase in elongation at break were observed with the increase in the content of the nutraceutical capsule waste. The results showed that the blends of safflower oil capsules waste-corn starch films demonstrated promising characteristics to form biodegradable films with different mechanical characteristics.
Resumo:
The Active Isolated Stretching (AIS) technique proposes that by contracting a muscle (agonist) the opposite muscle (antagonist) will relax through reciprocal inhibition and lengthen without increasing muscle tension (Mattes, 2000). The clinical effectiveness of AIS has been reported but its mechanism of action has not been investigated at the tissue level. Proposed mechanisms for increased range of motion (ROM) include mechanical or neural changes, or an increased stretch tolerance. The purpose of the study was to investigate changes in mechanical properties, i.e. stiffness, of skeletal muscle in response to acute and long-term AIS stretching for the hamstring muscle group. Recreationally active university-aged students (female n=8, male n=2) classified as having tight hamstrings, by a knee extension test, volunteered for the study. All stretch procedures were performed on the right leg, with the left leg serving as a control. Each subject was assessed twice: at an initial session and after completing a 6-week AIS hamstring stretch training program. For both test sessions active knee extension (ROM) to a position of "light irritation", passive resisted torque and stiffness were determined before and after completion of the AIS technique (2x10 reps). Data were collected using a Biodex System 3 Pro (Biodex Medical Systems, NY, USA) isokinetic dynamometer. Surface electromyography (EMG) was used to monitor vastus lateralis (VL) and hamstring muscle activity during the stretching movements. Between test sessions, 2x10 reps of the AIS bent knee hamstring stretch were performed daily for 6-weeks.
Resumo:
Cast Ai-Si alloys are widely used in the automotive, aerospace and general engineering industries due to their excellent combination of properties such as good castability, low coefficient of thermal expansion, high strength-to-weight ratio and good corrosion resistance. The present investigation is on the influence of alloying additions on the structure and properties of Ai-7Si-0.3Mg alloy. The primary objective of this present investigation is to study these beneficial effects of calcium on the structure and properties of Ai-7Si-0.3Mg-xFe alloys. The second objective of this work is to study the effects of Mn,Be and Sr addition as Fe neutralizers and also to study the interaction of Mn,Be,Sr and Ca in Ai-7Si-0.3Mg-xFe alloys. In this study the duel beneficial effects of Ca viz;modification and Fe-neutralization, comparison of the effects of Ca and Sr with common Fe neutralizers. The casting have been characterized with respect to their microstructure, %porosity and electrical conductivity, solidification behaviour and mechanical properties. One of the interesting observations in the present work is that a low level of calcium reduces the porosity compared to the untreated alloy. However higher level of calcium addition lead to higher porosity in the casting. An empirical analysis carried out for comparing the results of the present work with those of the other researchers on the effect of increasing iron content on UTS and % elongation of Ai-Si-Mg and Ai-Si-Cu alloys has shown a linear and an inverse first order polynomial relationships respectively.
Resumo:
The dynamic mechanical properties such as storage modulus, loss modulus and damping properties of blends of nylon copolymer (PA6,66) with ethylene propylene diene (EPDM) rubber was investigated with special reference to the effect of blend ratio and compatibilisation over a temperature range –100°C to 150°C at different frequencies. The effect of change in the composition of the polymer blends on tanδ was studied to understand the extent of polymer miscibility and damping characteristics. The loss tangent curve of the blends exhibited two transition peaks, corresponding to the glass transition temperature (Tg) of individual components indicating incompatibility of the blend systems. The morphology of the blends has been examined by using scanning electron microscopy. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends. Finally, attempts have been made to compare the experimental data with theoretical models.