532 resultados para Lysosomal proteinases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The durability of all forms of open or percutaneous revascularisation is affected by the development of localised stenoses within the bypass graft or at the site of endarterectomy, stent or angioplasty. The reported incidence of significant restenosis has varied dependent on initial procedure, site, case mix and definition, but is greatest during the first 12 months (Table 1).1 Over the last 40 years tens of thousands of studies have been carried out in an effort to understand or reduce the incidence of restenosis, with two major mechanisms identified as being responsible for the luminal narrowing, namely intimal hyperplasia and constrictive remodelling. Intimal hyperplasia is provoked by changes in the balance of local cytokines controlling vascular smooth muscle cell (VSMC) proliferation, apoptosis and migration, brought about by endothelial or medial injury and alterations in haemodynamic forces. The overall vessel diameter reduction that occurs in constrictive remodelling is less well defined, but likely involves matrix turnover under the control of proteinases, particularly metalloproteinases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Correspondence between the T-cell epitope responses of vaccine immunogens and those of pathogen antigens is critical to vaccine efficacy. In the present study, we analyzed the spectrum of immune responses of mice to three different forms of the SARS coronavirus nucleocapsid (N): (1) exogenous recombinant protein (N-GST) with Freund's adjuvant; (2) DNA encoding unmodified N as an endogenous cytoplasmic protein (pN); and (3) DNA encoding N as a LAMP-I chimera targeted to the lysosomal MHC II compartment (p-LAMP-N). Lysosomal trafficking of the LAMP/N chimera in transfected cells was documented by both confocal and immunoelectron microscopy. The responses of the immunized mice differed markedly. The strongest T-cell IFN-gamma and CTL responses were to the LAMP-N chimera followed by the pN immunogen. In contrast, N-GST elicited strong T cell IL-4 but minimal IFN-gamma responses and a much greater antibody response. Despite these differences, however, the immunodominant T-cell ELISpot responses to each of the three immunogens were elicited by the same N peptides, with the greatest responses being generated by a cluster of five overlapping peptides, N76-114, each of which contained nonameric H2(d) binding domains with high binding scores for both class I and, except for N76-93, class II alleles. These results demonstrate that processing and presentation of N, whether exogenously or endogenously derived, resulted in common immunodominant epitopes, supporting the usefulness of modified antigen delivery and trafficking forms and, in particular, LAMP chimeras as vaccine candidates. Nevertheless, the profiles of T-cell responses were distinctly different. The pronounced Th-2 and humoral response to N protein plus adjuvant are in contrast to the balanced IFN-gamma and IL-4 responses and strong memory CTL responses to the LAMP-N chimera. (C) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protease activated receptors (PARs) are a category of G-protein coupled receptors (GPCRs) implicated in the progression of a wide range of diseases, including thrombosis, inflammatory disorders, and proliferative diseases. Signal transduction via PARs proceeds via an unusual activation mechanism. Instead of being activated through direct interaction with an extracellular signal like most GPCRs. they are self-activated following cleavage of their extracellular N-terminus by serine proteases to generate a new receptor N-terminus that acts as an intramolecular ligand by folding back onto itself and triggering receptor activation. Short synthetic peptides corresponding to this newly exposed N-terminal tethered ligand can activate three of the four known PARs in the absence of proteases. and such PAR activating peptides (PAR-APs) have served as templates for agonist/antagonist development. In fact much of the evidence for involvement of PARs in diseases has relied upon use of PAR-APs. often of low potency and uncertain selectivity. This review summarizes current structures of PAR agonists and antagonists, the need for more selective and more potent PAR ligands that activate or antagonize this intriguing class of receptors, and outlines the background relevant to PAR activation, assay methods, and physiological properties anticipated for PAR ligands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The term secretome has been defined as a set of secreted proteins (Grimmond et al. [2003] Genome Res 13:1350-1359). The term secreted protein encompasses all proteins exported from the cell including growth factors, extracellular proteinases, morphogens, and extracellular matrix molecules. Defining the genes encoding secreted proteins that change in expression during organogenesis, the dynamic secretome, is likely to point to key drivers of morphogenesis. Such secreted proteins are involved in the reciprocal interactions between the ureteric bud (UB) and the metanephric mesenchyme (AM) that occur during organogenesis of the metanephros. Some key metanephric secreted proteins have been identified, but many remain to be determined. In this study, microarray expression profiling of E10.5, E11.5, and E13.5 kidney and consensus bioinformatic analysis were used to define a dynamic secretome of early metanephric development. In situ hybridisation was used to confirm microarray results and clarify spatial expression patterns for these genes. Forty-one secreted factors were dynamically expressed between the E10.5 and E13.5 timeframe profiled, and 25 of these factors had not previously been implicated in kidney development. A text-based anatomical ontology was used to spatially annotate the expression pattern of these genes in cultured metanephric explants.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treatment of murine myoblasts, myotubes and tumour cells with a tumour-produced lipid mobilizing factor (LMF), caused a concentration-dependent stimulation of protein synthesis, within a 24 h period. There was no effect on cell number or [3H] thymidine incorporation, but a similar concentration-dependent stimulation of 2-deoxyglucose uptake. LMF produced an increase in intracellular cyclic AMP levels, which was linearly (r2 = 0.973) related to the increase in protein synthesis. The effect of LMF was attenuated by the adenylate cyclase inhibitor MDL12330A, and was additive with the stimulation produced by forskolin. Both propranolol (10 μM) and the specific β3-adrenergic receptor antagonist SR 59230A (10-5M), significantly reduced the stimulation of protein synthesis induced by LMF. Protein synthesis was also increased by 69% (P = 0.006) in soleus muscles of mice administered LMF, while there was a 26% decrease in protein degradation (P = 0.03). While LMF had no effect on the lysosomal enzymes, cathepsins B and L, there was a decrease in proteasome activity, as determined both by the 'chymotrypsin-like' enzyme activity, as well as expression of proteasome α-type subunits, determined by Western blotting. These results show that in addition to its lipid-mobilizing activity LMF also increases protein accumulation in skeletal muscle both by an increase in protein synthesis and a decrease in protein catabolism. © 2001 Cancer Research Campaign.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer cachexia is characterized by selective depletion of skeletal muscle protein reserves. Soleus muscles from mice bearing a cachexia-inducing tumor (MAC16) showed an increased protein degradation in vitro, as measured by tyrosine release, when compared with muscles from nontumor-bearing animals. After incubation under conditions that modify different proteolytic systems, lysosomal, calcium-dependent, and ATP-dependent proteolysis were found to contribute to the elevated protein catabolism. Treatment of mice bearing the MAC16 tumor with the polyunsaturated fatty acid, eicosapentaenoic acid (EPA), attenuated loss of body weight and significantly suppressed protein catabolism in soleus muscles through an inhibition of an ATP-dependent proteolytic pathway. The ATP-ubiquitin-dependent proteolytic pathway is considered to play a major role in muscle catabolism in cachexia, and functional proteasome activity, as determined by “chymotrypsin-like” enzyme activity, was significantly elevated in gastrocnemius muscle of mice bearing the MAC16 tumor as weight loss progressed. When animals bearing the MAC16 tumor were treated with EPA, functional proteasome activity was completely suppressed, together with attenuation of the expression of 20S proteasome a-subunits and the p42 regulator, whereas there was no effect on the expression of the ubiquitin-conjugating enzyme (E214k). These results suggest that EPA induces an attenuation of the up-regulation of proteasome expression in cachectic mice, and this was correlated with an increase in myosin expression, confirming retention of contractile proteins. EPA also inhibited growth of the MAC16 tumor in a dose-dependent manner, and this correlated with suppression of the expression of the 20S proteasome a-subunits in tumor cells, suggesting that this may be the mechanism of tumor growth inhibition. Thus EPA antagonizes loss of skeletal muscle proteins in cancer cachexia by down-regulation of proteasome expression, and this may also be the mechanism for inhibition of tumor growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patients with cancer often undergo a specific loss of skeletal muscle mass, while the visceral protein reserves are preserved. This condition known as cachexia reduces the quality of life and eventually results in death through erosion of the respiratory muscles. Nutritional supplementation or appetite stimulants are unable to restore the loss of lean body mass, since protein catabolism is increased mainly as a result of the activation of the ATP-ubiquitin-dependent proteolytic pathway. Several mediators have been proposed. An enhanced protein degradation is seen in skeletal muscle of mice administered tumour necrosis factor (TNF), which appears to be mediated by oxidative stress. There is some evidence that this may be a direct effect and is associated with an increase in total cellular-ubiquitin-conjugated muscle proteins. Another cytokine, interleukin-6 (IL-6), may play a role in muscle wasting in certain animal tumours, possibly through both lysosomal (cathepsin) and non-lysosomal (proteasome) pathways. A tumour product, proteolysis-inducing factor (PIF) is produced by cachexia-inducing murine and human tumours and initiates muscle protein degradation directly through activation of the proteasome pathway. The action of PIF is blocked by eicosapentaenoic acid (EPA), which has been shown to attenuate the development of cachexia in pancreatic cancer patients. When combined with nutritional supplementation EPA leads to accumulation of lean body mass and prolongs survival. Further knowledge on the biochemical mechanisms of muscle protein catabolism will aid the development of effective therapy for cachexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracellular degradation of genes, most notably within the endo-lysosomal compartment is considered a significant barrier to (non-viral) gene delivery in vivo. Previous reports based on in vitro studies claim that carriers possessing a mixture of primary, secondary and tertiary amines are able to buffer the acidic environment within the endosome, allowing for timely release of their contents, leading to higher transfection rates. In this report, we adopt an atomistic molecular dynamics (MD) simulation approach, comparing the complexation of 21-bp siRNA with low-generation polyamidoamine (PAMAM) dendrimers (G0 and G1) at both neutral and acidic pHs, the latter of which mimics the degradative environment within maturing 'late-endosomes'. Our simulations reveal that the time taken for the dendrimer-gene complex (dendriplex) to reach equilibrium is appreciably longer at low pH and this is accompanied by more compact packaging of the dendriplex, as compared to simulations performed at neutral pH. We also note larger absolute values of calculated binding free energies of the dendriplex at low pH, indicating a higher dendrimer-nucleic acid affinity in comparison with neutral pH. These novel simulations provide a more detailed understanding of low molecular-weight polymer-siRNA behavior, mimicking the endosomal environment and provide input of direct relevance to the "proton sponge theory", thereby advancing the rational design of non-viral gene delivery systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saprolegia ssp. effectively utilized the protein casein as a sole source of carbon, nitrogen and sulphur, indicating considerable proteolytic activity. In the presence of a more simple carbon source such as glucose, which was readily assimilated, catabolite repression was not observed and casein exploitation was enhanced. Free proteinase activity was not detected by a number of methods, irrespective of culture conditions. However, clearing by mycelia of skimmed milk agar or agar amended with bacteria demonstrated a close association between proteinases and hyphae, suggestive of natural immobilization of proteinases. Casein breakdown was accompanied by release of individual amino acids and ammonia. The latter, indicative of amino acid assimilation and metabolism, was also associated with an increase in pH of culture medium. Single amino acids did not support growth of Saprolegnia but in combination with other amino acids, methionine encouraged greatest biomass production. Certain groupings of amino acids affected growth in a manner which departed from that expected, as assessed by multifactorial analysis of variance, and either enhanced or reduced growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autophagy is a highly conserved cellular process responsible for the degradation of long-lived proteins and organelles. Autophagy occurs at low levels under normal conditions, but it is enhanced in response to stress, e.g. nutrient deprivation, hypoxia, mitochondrial dysfunction and infection. "Tissue" transglutaminase (TG2) accumulates, both in vivo and in vitro, to high levels in cells under stressful conditions. Therefore, in this study, we investigated whether TG2 could also play a role in the autophagic process. To this end, we used TG2 knockout mice and cell lines in which the enzyme was either absent or overexpressed. The ablation of TG2 protein both in vivo and in vitro, resulted in an evident accumulation of microtubule-associated protein 1 light chain 3 cleaved isoform II (LC3 II) on pre-autophagic vesicles, suggesting a marked induction of autophagy. By contrast, the formation of the acidic vesicular organelles in the same cells was very limited, indicating an impairment of the final maturation of autophagolysosomes. In fact, the treatment of TG2 proficient cells with NH4Cl, to inhibit lysosomal activity, led to a marked accumulation of LC3 II and damaged mitochondria similar to what we observed in TG2-deficient cells. These data indicate a role for TG2-mediated post-translational modifications of proteins in the maturation of autophagosomes accompanied by the accumulation of many damaged mitochondria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficacy of antisense oligonucleotide (ODN) therapy is dependent on four major parameters: delivery to cells, intracellular stability and localisation and efficient action at the target site.The aim of this project was to study the delivery of ODNs to macrophages and to assess the stability of two ODN conjugates, in vitro. The first conjugate aimed to improve uptake of ODNs via mannose receptor mediated delivery, the second investigated the improved delivery of ODN conjugates via non-specific lipophilic interaction with the cell membrane. A mono-mannose phosphoramidite derivative was designed and synthesised and a mono-mannose ODN conjugate synthesised by standard phosphoramidite chemistry. Delivery of this conjugate was enhanced to RAW264.7 and J774 macrophage cell lines via a mechanism of receptor mediated endocytosis. The delivery of three lipophilic ODN conjugates, cholesterol (cholhex), 16-carbon alkyl chain (C16) and hexa-ethylene glycol (HEG) moieties and an unconjugated ODN were assessed in RAW264.7 macrophages. All three conjugates increased the lipophilicity of the ODN as assessed from partition coefficient data. Both the cholhex and unconjugated ODNs were found to have higher degrees of cellular association than the C16 and HEG conjugates. Cellular uptake studies implicated internalisation of these ODNs by an adsorptive endocytosis mechanism. Following endocytosis, ODNs must remain stable during their residence in endosomal/lysosomal compartments prior to exiting and exerting their biological action in either the cytosol or nucleus. Assessment of in vitro stability in a lysosomal extract revealed the cholhex conjugate and unconjugated ODNs to have a longer half-life than the C16 and HEG conjugated ODNs, highlighting the influence of conjugate moieties on lysosomal stability. The effects of base composition and length on stability in a lysosomal extract revealed the longest half-life for homo-cytidine ODNs and ODNs over 20 nucleotides in length. These studies suggest that the above conjugates can enhance cellular association and delivery of antisense ODNs to cultured macrophages. This may lead to their use in treating disorders such as HIV infection, which affects this cell type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hammerhead ribozymes are potent RNA molecules which have the potential to specifically inhibit gene expression by catalysing the trans-cleavage of mRNAs. However, they are unstable in biological fluids and cellular delivery poses a problem. Site-specific chemical modification of hammerhead ribozymes was evaluated as a means of enhancing biological stability. Chimeric, 2'-O-methylated ribozymes, containing only five unmodified ribonucleotides, were catalytically active in vitro (kcat = 1.46 min-1) and were significantly more stable in serum and lysosomal enzymes than unmodified (all-RNA) counterparts. Furthermore, they remained undegraded in cell-containing media for up to 8 hours. Stability enhancement allowed cellular uptake properties of radiolabelled ribozymes to be assessed following exogenous delivery. Studies in vulval and glial cell lines indicated that chimeric ribozymes became cell-associated via an inefficient process, which was energy and concentration dependant. A considerable proportion of ribozymes remained bound to cell-surface components, however, a small proportion (<1%) were internalised via mechanisms of adsorptive and / or receptor mediated endocytosis. Fluorescent microscopy indicated that ribozymes were localised within endosomal / lysosomal vesicles following cell entry. This was confirmed by immuno-electron microscopy, which allowed the detection of biotin-labelled ribozymes within the cell ultrastructure. Despite the predominant localisation within endocytic vesicles, a small proportion of internalised ribozymes appeared able to exit these compartments and penetrate target sites within the nucleus and cytoplasm. The ribozymes designed in this report were directed against the epidermal growth factor receptor mRNA, which is over-expressed in a malignant brain disease called glioblastoma multiforme. In order to examine the fate of ribozymes in the brain, the distribution of FITC-labelled ribozymes was examined following intra-cerebro ventricular injection to mice. FITC-ribozymes demonstrated high punctate pattern of distribution within the striatum and cortex, which appeared to represent localisation within cell bodies and dendritic processes. This suggested that delivery to glial cells in vivo may be possible. Finally, strategies were investigated to enhance the cellular delivery of ribozymes. Conjugation of ribozymes to anti~transferrin receptor antibodies improved cellular uptake 3-fold as a result of a specific interaction with transferrin receptors. Complexation with cationic liposomes also significantly improved cell association, however, some toxiclty was observed and this could be a limitation to their use. Overall, it would appear that hammerhead ribozymes can be chemically stabilised to allow direct exogenous administration in vivo. However, additional delivery strategies are probably required to improve cellular uptake, and thus, allow ribozymes to achieve their full potential as pharmaceutical agents. KEYWORDS: Catalytic