851 resultados para Lloyd
Resumo:
In this study, I examine the agon scene in Euripides' Alcestis. The agon is placed in the 4th episode, when Alcestis' corpse has recieved all preparations for the funeral, and Admeto has already accomodated Heracles in the palace, without telling him, however, about the last occurrences. This episode is the biggest of the play with 360 verses, what could cause the prolongation of the action and consequently the decline of the emotional tonus. Nevertheless, Euripides has composed this episode with very diversified elements, that it could be divided in scenes, what confers certain agitily to the events succession that accelerates the end of the play. I took as basis the commentaries by A. M. Dale and by L P. E. Parker, and whenever necessary, I have also recurred to the James Diggle?s and D. J Conacher?s editions. Another important text for the present discussion of the agon in Alcestis is the book by Michael Lloyd, The Agon in Euripides
Resumo:
In this study, I examine the agon scene in Euripides' Alcestis. The agon is placed in the 4th episode, when Alcestis' corpse has recieved all preparations for the funeral, and Admeto has already accomodated Heracles in the palace, without telling him, however, about the last occurrences. This episode is the biggest of the play with 360 verses, what could cause the prolongation of the action and consequently the decline of the emotional tonus. Nevertheless, Euripides has composed this episode with very diversified elements, that it could be divided in scenes, what confers certain agitily to the events succession that accelerates the end of the play. I took as basis the commentaries by A. M. Dale and by L P. E. Parker, and whenever necessary, I have also recurred to the James Diggle?s and D. J Conacher?s editions. Another important text for the present discussion of the agon in Alcestis is the book by Michael Lloyd, The Agon in Euripides
Resumo:
Late Pliocene to Recent sediments from the southern Brazil Basin (DSDP Hole 515A, hydraulic piston core) were analyzed for evidence of episodic flow of Antarctic Bottom Water (AABW) through the Vema Channel. Carbonate-enriched layers punctuate the post-Pliocene section, otherwise composed predominantly of terrigenous silt and clay. Carbonate enrichment is thought to result from rapid deposition of fine-grained calcareous turbidites, originating in canyons incised on the northern margin of the Rio Grande Rise. The composition of benthic foraminiferal assemblages and the presence of stratigraphically displaced discoasters is consistent with a turbidite origin. Based on the presence of displaced Antarctic diatoms, AABW flow through the Vema Channel apparently has had a major influence on this site for only four periods during the last 2.7 Ma (about 45 to 250; 375 to 430; 700 to 780; 1320 to 1345 thousand yr. ago).
Resumo:
Sediment samples taken at close intervals across four major unconformities (middle Miocene/upper Miocene, lower Oligocene/upper Oligocene, lower Eocene/upper Eocene, lower Paleocene/upper Paleocene) at DSDP-IPOD Site 548, Goban Spur, reveal that coeval biostratigraphic gaps, sediment discontinuities, and seismic unconformities coincide with postulated low stands of sea level. Foraminiferal, lithic, and isotopic analyses demonstrate that environments began to shift prior to periods of marine erosion, and that sedimentation resumed in the form of turbidites derived from nearby upper-slope sources. The unconformities appear to have developed where a water-mass boundary intersected the continental slope, rhythmically crossing the drill site in concert with sea-level rise and fall.
Resumo:
Six deep sea cores from the eastern equatorial Pacific (EEP) were analyzed for planktonic foraminifera and stable isotopes in order to reconstruct sea surface temperatures (SST) for the last 40 ka. South of the Equatorial Front the abundance of Globorotalia inflata increased, and SST decreased by >5°C (core ODP846B), creating a stronger SST meridional gradient and advection of the Peru Current than present for the ~16-35 ka interval. A sharper SST meridional gradient forced stronger Choco jet events and a moisture increase in western Colombia, which supplied, through the San Juan River and the south-flowing equatorial and the Peru-Chile countercurrents, abundant hemipelagic quartz over the northern Peru basin (core TR163-31B). The Choco jet, and its associated mesoscale convective cells, provoked an increase in snow precipitation over the Central Cordillera of Colombia and the advance of the Murillo glacier. In synchrony with the intensified Choco jet events, the "dry island" effect over the Eastern Cordillera of Colombia intensified, and the level of Fuquene Lake dropped.
Resumo:
Two sites on the southern flank of the Costa Rica Rift were drilled on DSDP Legs 68 and 69, one on crust 3.9 m.y. old and the other on crust 5.9 m.y. old. The basement of the younger site is effectively cooled by the circulation of seawater. The basement of the older site has been sealed by sediment, and an interval in the uppermost 560 meters of basement recently reheated to temperatures of 60 to 120°C. Although the thickness of the sediments at the two sites is similar (150-240 m versus 270 m), the much rougher basement topography at the younger Site 505 produces occasional basement outcrops, through which 80 to 90% of the total heat loss apparently occurs by advection of warm seawater. This seawater has been heated only slightly, however; the temperature at the base of the sediments is only 9°C. Changes in its composition due to reaction with the basement basalts are negligible, as indicated by profiles of sediment pore water chemistry. Bacterial sulfate reduction in the sediments produces a decrease in SO4 (and Ca) and an increase in alkalinity (and Sr and NH3) as depth increases to an intermediate level, but at deeper levels these trends reverse, and all of these species plus Mg, K, Na, and chlorinity approach seawater values near basement. Si, however, is higher, and Li may be lower. At the older site, Site 501/504, where heat loss is entirely by conduction, the temperature at the sediment/basement contact is 59°C. Sediment pore water chemistry is heavily affected by reaction with the basaltic basement, as indicated by large decreases in d18O, Mg, alkalinity, Na, and K and an increase in Ca with increasing depth. The size of the changes in d18O, Mg, alkalinity, Ca, Sr, and SO4 varies laterally over 500 meters, indicating lateral gradients in pore water chemistry that are nearly as large as the vertical gradients. The lateral gradients are believed to result from similar lateral gradients in the composition of the basement formation water, which propagate upward through the sediments by diffusion. A model of the d18O profile suggests that the basement at Site 501/504 was sealed off from advection about 1 m.y. ago, so that reaction rates began to dominate the basement pore water chemistry. A limestone-chert diagenetic front began to move upward through the lower sediments less than 200,000 yr. ago.