908 resultados para Liquid-phase sintering
Resumo:
The use of Saccharomyces cerevisiae as a substrate to selectively retain Sn(II) and Sn(IV) has been investigated. Several factors affecting the retention of the analytes by yeast, such as pH, amount of biomass, temperature and time of contact were evaluated. Based on this study, a method for determination of Sn(II) and Sn(IV) combining inductively coupled plasma optical emission spectrometry (ICP OES) and solid phase extraction using Saccharomyces cerevisiae is proposed. The procedure consists of the selective retention of Sn(IV) by yeast at pH = 2.0 while Sn(II) remains in solution. Determination of tin in the solid phase was easily carried out by submitting a slurry of the yeast (0.5 g/40 mL) directly to ICP OES. The precision of the extraction procedure was characterized by an RSD lower than 4%. The detection limits of tin (3 sigma) in the solid phase and the liquid phase were 1.1 and 0.7 mu g L-1, respectively. The proposed approach was evaluated for determination of Sn(II) and Sn(IV) in spiked river water and real samples of industrial waste water (untreated and treated). For all samples, recoveries of spiked Sn(II) and Sn(IV) were between 85 and 112%.
Resumo:
The use of Saccharomyces cerevisiae as a sorbent material to separate Cd(II) and Cd-metallothionein complex (Cd-MT) has been explored. Solid-liquid phase extractions were carried out in batch mode and the main parameters of the process (pH, temperature, time of incubation, amount of biomass and analyte) were evaluated. Under optimized conditions, the yeast quantitatively retain (94 +/- 5%) the Cd(II) while 97 +/- 2% of the Cd-MT remain in the supernatant. on base of the findings of this study, a simple method is proposed to determine Cd(II) and Cd-MT in cytosols extracted from mouse kidney and crab hepatopancreas. Inductively coupled plasma optical emission spectrometry was used to quantify the analytes in solid and liquid phase. Determination of Cd in the solid phase was carried out by introducing a slurry of the yeast (0.0625 g/10 mL) directly to the inductively coupled plasma optical emission spectrometer. Mixed standards solutions, which also have been submitted to the extraction procedure, were used to quantify the analytes in the samples. Thus, matrix effects due to nebulization of the slurry were overcame. Limits of detection (3 sigma) for Cd(II) and Cd-MT were 1.5 and 1.2 mu g L-1, respectively. Relative standard deviations of signals were 4.2% for measurements in the slurry of solid phase and 2.1% for measurements in the liquid phase. Recoveries of the analytes in cytosol samples were between 76 and 114%. The concentrations of Cd(II) (2.4 +/- 0.5 mu g L-1) and Cd-MT (3.0 +/- 0.5 mu g L-1) found by using the proposed approach were close to those found by tangential-flow ultrafiltration technique (2.6 +/- 0.7 mu g L-1 for Cd(II) and 3.7 +/- 1.7 mu g L-1 for Cd-MT).
Resumo:
In this work, a preconcentration and separation system based on continuous flow hydride generation is proposed to improve the determination of As and Se by total reflection X-ray fluorescence spectrometry. The generated hydrides are continuously separated from the liquid phase and collected in a chamber containing 250 mul of HCI/HNO3 1:1 (v/v) solution. Hydride generation conditions and collection of the hydrides were evaluated. Under optimised conditions, enrichment factors of 55 for As and 82 for Se were attained. Detection limits of 0.3 mug l(-1) for As and Se were obtained when 20 ml of sample was used. Analysis of a natural water standard reference material from National Institute of Standard and Technology (SRM-1640) was in agreement with the certified values at the 95% confidence level. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
About similar to 2.1 x 10(-3) Mol SiO2 cm(-3) and similar to 88%-volume liquid-phase silica wet gels were prepared from oxalic-acid-catalyzed tetraethoxysilane (TEOS) sonohydrolysis. Aerogels were obtained by supercritical CO2 extraction. The samples were analyzed by thermogravimetry, small-angle X-ray scattering and nitrogen adsorption. Wet gels can be described as mass fractal structures with fractal dimension D similar to 1.94 and structural characteristic length zeta changing between similar to 3.3 to similar to 3.0 nm in the studied range of the catalyst concentration. A fraction of the porosity is apparently eliminated in the supercritical process. The values of the BET specific surface S-BET, the total pore volume V-p and the mean pore size l(p) of the aerogels were found to change almost randomly around the mean values S-BET = 874 m(2) g(-1), V-p = 0.961 cm(3) g(-1) and l(p) = 4.4 nm with catalyst concentration variation. These values were not substantially different from those from an equivalent HCl-catalyzed aerogel. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The effect of time of exposure, solution concentration and temperature on the osmotic concentration of banana (slices of 11 mm thickness) was studied in aqueous sucrose solutions. The selectivity of the cellular tissues was reduced by steam blanching the banana slices before osmotic treatment. Effective diffusion coefficients for the loss of water and the increase in sucrose content were determined according to Fick's Law applied to a two-dimensional body; calculated on the basis of the concentration of various components in the liquid phase impenetrating the fruit. These coefficients revealed values similar to binary diffusion coefficients for pure sucrose solutions.
Resumo:
Wet silica gels with similar to 1.4 x 10(-3) mol SiO2/cm(3) and similar to 92 vol% liquid phase were obtained from sonohydrolysis of tetraethoxysilane (TEOS) with different additions of isopropyl alcohol ( IPA). The IPA/TEOS molar ratio R was changed from 0 to 4. Aerogels were obtained by supercritical CO2 extraction. The samples were analyzed by small-angle X-ray scattering (SAXS) and nitrogen adsorption. The wet gels exhibit mass fractal structure with fractal dimension increasing from D similar to 2.10 to D similar to 2.22, characteristic length xi decreasing from similar to 9.5 to similar to 6.9 nm, as R increases from 0 to 4, and an estimated characteristic length for the primary silica particles lower than similar to 0.3 nm. The supercritical process apparently eliminates a fraction of the porosity, increasing the mass fractal dimension and shortening the fractality domain in the mesopore region. The fundamental role of isopropyl alcohol on the structure of the resulting aerogels is to decrease the porosity and the pore mean size as R changes from pure TEOS to R = 4. A secondary structure appearing in the micropore region of the aerogels can be described as a mass/surface fractal structure, with correlated mass fractal dimension D-m similar to 2.7 and surface fractal dimension D-s similar to 2.3, as inferred from SAXS and nitrogen adsorption data.
Resumo:
The feasibility of using internal standardization (IS) to correct for interferences in hydride generation with in situ trapping in graphite furnace was evaluated. Arsenic was chosen as internal standard for Sb determination and Ir was used as permanent modifier. Fluctuations in the main parameters that affect the analytical results were minimized by IS and an effective contribution was verified in the studies of liquid phase interferences. Cobalt and Ni2+ were selected to illustrate the potential use of IS on the correction of interference by transition metals. The application of IS allows the Sb determination in samples containing up to 20-fold higher concentration of the Co2+ and Ni2+ when compared to the procedure without IS. The relative standard deviation of measurements varied from 0.3% to 0.7% and from 1.1% to 3.2% with and without IS, respectively. Recoveries within 92% and 107% of spiked aqueous solution containing Sb(III) and Sb(V) were found. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The main goal of the present study was to evaluate the effect of different setting accelerator agents on the developed microstructures of calcium phosphate cements (CPCs) by employing the impedance spectroscopy (IS) technique. Six compositions of CPCs were prepared from mixtures of commercial dicalcium phosphate anhydrous (DCPA) and synthesized tetracalcium phosphate (TTCP) as the solid phases. Two TTCP/DCPA molar ratios (1/1 and 1/2) and three liquid phases (aqueous solutions of Na(2)HPO(4), tartaric acid (TA) and oxalic acid (OA), 5% volume fraction) were employed. Initial (I) and final (F) setting times of the cement pastes were determined with Gillmore needles (ASTM standard C266-99). The hardened samples were characterized by X-ray powder diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and apparent density measurements. The IS technique was employed as a non-destructive tool to obtain information related to porosity, tortuosity and homogeneity of the cement microstructures. The formulation prepared from a TTCP/DCPA equimolar mixture and OA as the liquid phase presented the shortest I and F (12 and 20 min, respectively) in comparison to the other studied systems. XRD analyses revealed the formation of low-crystallinity hydroxyapatite (HA) (as the main phase) as well as the presence of little amounts of unreacted DCPA and TTCP after 24 h hardening in 100% relative humidity. This was related to the proposed mechanisms of dissolution of the reactants. The bands observed by FTIR allowed identifying the presence of calcium tartrate and calcium oxalate in the samples prepared from TA and OA, in addition to the characteristic bands of HA. High degree of entanglement of the formed crystals was observed by SEM in samples containing OA. SEM images were also correlated to the apparent densities of the hardened cements. Changes in porosity, tortuosity and microstructural homogeneity were determined in all samples, from IS results, when the TTCP/DCPA ratio was changed from 1/1 to 1/2. The cement formulated from an equimolar mixture of TTCP/DCPA and OA as the liquid phase presented setting times, degree of conversion to low-crystallinity HA and microstructural features suitable to be used as potential bone cement in clinical applications. The IS technique was shown to be a very sensitive and non-destructive tool to relate the paste composition to the developed microstructures. This approach could be very useful to develop calcium phosphate bone cements for specific clinical demands.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The structural characteristics of saturated silica sonogels were studied by means of small-angle x-ray scattering (SAXS) and thermogravimetric analysis (TG), after a long time of aging in saturated conditions. The sonogels were obtained by a sol-gel routine from ultrasound stimulated tetramethoxysilane (TMOS) hydrolysis carried out with the initial water/TMOS molar ratio (r) ranging from 2 to 10. The saturated sonogel structure can be described as composed by mass fractal-like aggregates (clusters) of primary silica particles, all imbibed in a liquid phase. The values of the mass fractal dimension (D) of the clusters was found all around 2.5, while the characteristic size of the clusters (ξ) was found generally increasing with r, going from approximately 2.3 nm (r = 2) to 4.5 nm (r = 10). The volume fraction of the clusters was estimated from the SAXS data. The results were compared to the values of weight loss fraction at the inflection point that has been found in the derivative of the TG curve, which should accounts for the instant in which the meniscus of the liquid phase penetrates into the clusters under a rapid evaporation process as in a TG test.
Resumo:
One indirect approach to predict the disinfection by-product (DBP) formation potential for a given water source is by evaluation of the kinetic behavior of free chlorine in the liquid phase and chlorine demand determination for different operation conditions of the chlorination process. The objective of this work was to evaluate the kinetic behavior of free chlorine in water or a number of different raw water sources, as well as to investigate the impact of the coagulation process on chlorine demand reduction and DBP formation. It was observed that the higher the total organic carbon (TOC) removal efficiency through coagulation, the lower the liquid phase chlorine demand. Regarding trihalomethane (THM) formation, a ratio of 28 ug/L formed per mg/L of applied chlorine was observed for the waters employed in the experimental investigation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This investigation reports the results of a study realized in an area related to the development of sand mining activities, which belongs to Sibelco Mineração Ltd. The site is located around Analândia municipality, nearly in the center of São Paulo State, Brazil. Hydrochemical analyses of groundwater were realized under different periods of time, with the aim of evaluating the possibility of release of several constituents to the liquid phase, which may be a source of pollution of the surface hydrological resources and of the deeper Guarani aquifer. This is because the site is located at the recharge area of Guarani aquifer and some tributaries from Corumbataí river may also be suffering contamination, implying on the impoverishment of the water quality that are very important resources in the region, as they are extensively used for drinking purposes, among others.© 2011 WIT Press.
Resumo:
The radioactivity due to 238U and 234U in three aquifer systems occurring within the Paraná sedimentary basin, South America, has been investigated. Uranium is much less dissolved from fractured igneous rocks than from the porous sedimentary rocks as indicated by the U-mobility coefficients between 7. 6 × 10-6 and 1. 2 × 10-3 g cm-3. These values are also compatible with the U preference ratios relative to Na, K, Ca, Mg and SiO2, which showed that U is never preferentially mobilized in the liquid phase during the flow occurring in cracks, fissures, fractures and faults of the igneous basaltic rocks. Experimental dissolution of diabase grains on a time-scale laboratory has demonstrated that the U dissolution appeared to be a two-stage process characterized by linear and second-order kinetics. The U dissolution rate was 8 × 10-16 mol m-2 s-1 that is within the range of 4 × 10-16-3 × 10-14 mol m-2 s-1 estimated for other rock types. The 234U/238U activity ratio of dissolved U in solutions was higher than unity, a typical result expected during the water-rock interactions when preferential 234U-leach from the rock surfaces takes place. Some U-isotopes data allowed estimating 320 ka for the groundwater residence time in a sector of a transect in São Paulo State. A modeling has been also realized considering all U-isotopes data obtained in Bauru (35 samples), Serra Geral (16 samples) and Guarani (29 samples) aquifers. The results indicated that the Bauru aquifer waters may result from the admixture of waters from Guarani (1. 5 %) and Serra Geral (98. 5 %) aquifers. © 2012 Springer-Verlag.
Resumo:
The equivalent uranium (eU) activity concentration was analysed in selected granite samples at several sites in Porto Alegre, Southern Brazil, to obtain information on the radon (222Rn) generation by the aquifer rock matrices. Radon analyses of ground water and soil samples were also performed. Several samples exhibited a dissolved 222Rn activity concentration exceeding the World Health Organization maximum limit of 100 Bq l-1. The dissolved radon content in ground waters from the Fractured Precambrian Aquifer System exhibited a direct significant correlation with the eU in the rock matrices, which is a typical result of water-rock interactions. Variation in the soil's porosity was confirmed as an important factor for 222Rn release, as expected, due to its gaseous nature. Thus, although the calcic-alkaline to alkaline Precambrian granitoid rocks of the study area are important reservoirs for underground resources, they can release high amounts of radon gas into the liquid phase. © 2013 Copyright Taylor and Francis Group, LLC.