979 resultados para Linear elastic
Resumo:
[cat] En aquest treball extenem les reformes lineals introduïdes per Pfähler (1984) al cas d’impostos duals. Estudiem l’efecte relatiu que els retalls lineals duals d’un impost dual tenen sobre la distribució de la desigualtat -es pot fer un estudi simètric per al cas d’augments d’impostos-. Tambe introduïm mesures del grau de progressivitat d’impostos duals i mostrem que estan connectades amb el criteri de dominació de Lorenz. Addicionalment, estudiem l’elasticitat de la càrrega fiscal de cadascuna de les reformes proposades. Finalment, gràcies a un model de microsimulació i una gran base de dades que conté informació sobre l’IRPF espanyol de l’any 2004, 1) comparem l’efecte que diferents reformes tindrien sobre l’impost dual espanyol i 2) estudiem quina redistribució de la riquesa va suposar la reforma dual de l’IRPF (Llei ’35/2006’) respecte l’anterior impost.
Resumo:
We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed
Resumo:
We have measured the adiabatic elastic constants of two Cu-Al-Ni martensitic alloys using ultrasonic methods and we have compared the results to recent neutron-scattering experiments. It is shown that the elastic behavior of Cu-Al-Ni alloys follows the same trends exhibited by other Cu-based alloys; in particular, the TA2 long-wavelength acoustic modes are softer than all other modes.
Resumo:
Experimental data from ultrasonic and inelastic neutron scattering measurements are analyzed for different families of Cu-based shape-memory alloys. It is shown that the transition occurs at a value, independent of composition and alloy family, of the ratio between the elastic constants associated with the two shears necessary to accomplish the lattice distortion from the bcc to the close-packed structure. The zone boundary frequency of the TA2[110] branch evaluated at the transition point (TM), weakly depends, for each family, on composition. A linear relationship between this frequency and the inverse of the elastic constant C', both quantities evaluated at TM, has been found, in agreement with the prediction of a Landau model proposed for martensitic transformations.
Resumo:
We have measured the changes in the ultrasonic wave velocity, induced by the application of uniaxial stresses in a Cu-Al-Ni single crystal. From these measurements, the complete set of third-order elastic constants has been obtained. The comparison of results for Cu-Al-Ni with available data for other Cu-based alloys has shown that all these alloys exhibit similar anharmonic behavior. By using the measured elastic constants in a Landau expansion for elastic phase transitions, we have been able to give an estimation of the value of a fourth-order elastic constants combination. The experiments have also shown that the application of a stress in the [001] direction, reduces the material resistance to a (110)[110] shear and thus favors the martensitic transition.
Resumo:
Systematic trends in the properties of a linear split-gate heterojunction are studied by solving iteratively the Poisson and Schrödinger equations for different gate potentials and temperatures. A two-dimensional approximation is presented that is much simpler in the numerical implementation and that accurately reproduces all significant trends. In deriving this approximation, we provide a rigorous and quantitative basis for the formulation of models that assumes a two-dimensional character for the electron gas at the junction.
Resumo:
We have measured the adiabatic second order elastic constants of two Ni-Mn-Ga magnetic shape memory crystals with different martensitic transition temperatures, using ultrasonic methods. The temperature dependence of the elastic constants has been followed across the ferromagnetic transition and down to the martensitic transition temperature. Within experimental errors no noticeable change in any of the elastic constants has been observed at the Curie point. The temperature dependence of the shear elastic constant C' has been found to be very different for the two alloys. Such a different behavior is in agreement with recent theoretical predictions for systems undergoing multi-stage structural transitions.
Resumo:
We report on measurements of the adiabatic second-order elastic constants of the off-stoichiometric Ni54Mn23Al23 single-crystalline Heusler alloy. The variation in the temperature dependence of the elastic constants has been investigated across the magnetic transition and over a broad temperature range. Anomalies in the temperature behavior of the elastic constants have been found in the vicinity of the magnetic phase transition. Measurements under applied magnetic field, both isothermal and variable temperature, show that the value of the elastic constants depends on magnetic order, thus giving evidence for magnetoelastic coupling in this alloy system.
Resumo:
We explain the empirical linear relations between the triplet scattering length, or the asymptotic normalization constant, and the deuteron matter radius using the effective range expansion in a manner similar to a recent paper by Bhaduri et al. We emphasize the corrections due to the finite force range and to shape dependence. The discrepancy between the experimental values and the empirical line shows the need for a larger value of the wound extension, a parameter which we introduce here. Short-distance nonlocality of the n-p interaction is a plausible explanation for the discrepancy.
Resumo:
Results for elastic electron scattering by nuclei, calculated with charge densities of Skyrme forces and covariant effective Lagrangians that accurately describe nuclear ground states, are compared against experiment in stable isotopes. Dirac partial-wave calculations are performed with an adapted version of the ELSEPA package. Motivated by the fact that studies of electron scattering off exotic nuclei are intended in future facilities in the commissioned GSI and RIKEN upgrades, we survey the theoretical predictions from neutron-deficient to neutron-rich isotopes in the tin and calcium isotopic chains. The charge densities of a covariant interaction that describes the low-energy electromagnetic structure of the nucleon within the Lagrangian of the theory are used to this end. The study is restricted to medium- and heavy-mass nuclei because the charge densities are computed in mean-field approach. Because the experimental analysis of scattering data commonly involves parameterized charge densities, as a surrogate exercise for the yet unexplored exotic nuclei, we fit our calculated mean-field densities with Helm model distributions. This procedure turns out to be helpful to study the neutron-number variation of the scattering observables and allows us to identify correlations of potential interest among some of these observables within the isotopic chains.