644 resultados para Levure à fission
Resumo:
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset neurological disease resulting from mutations in the SACS gene encoding sacsin, a 4,579-aa protein of unknown function. Originally identified as a founder disease in Québec, ARSACS is now recognized worldwide. Prominent features include pyramidal spasticity and cerebellar ataxia, but the underlying pathology and pathophysiological mechanisms are unknown. We have generated an animal model for ARSACS, sacsin knockout mice, that display age-dependent neurodegeneration of cerebellar Purkinje cells. To explore the pathophysiological basis for this observation, we examined the cell biological properties of sacsin. We show that sacsin localizes to mitochondria in non-neuronal cells and primary neurons and that it interacts with dynamin-related protein 1, which participates in mitochondrial fission. Fibroblasts from ARSACS patients show a hyperfused mitochondrial network, consistent with defects in mitochondrial fission. Sacsin knockdown leads to an overly interconnected and functionally impaired mitochondrial network, and mitochondria accumulate in the soma and proximal dendrites of sacsin knockdown neurons. Disruption of mitochondrial transport into dendrites has been shown to lead to abnormal dendritic morphology, and we observe striking alterations in the organization of dendritic fields in the cerebellum of knockout mice that precedes Purkinje cell death. Our data identifies mitochondrial dysfunction/mislocalization as the likely cellular basis for ARSACS and indicates a role for sacsin in regulation of mitochondrial dynamics.
Resumo:
The DNA nuclease activity encoded by the end1 gene, and its inactivation by mutation, was described in connection with the characterization of DNA topoisomerases in the fission yeast Schizosaccharomyces pombe (Uemura and Yanagida, 1984). Subsequently, end1 mutant strains were used for the preparation of cell extracts for the study of enzymes and intermediates involved in DNA metabolism. The molecular identification of the end1 gene and its identity with the pnu1 gene is presented. The end1-458 mutation alters glycine to glutamate in the conserved motif TGPYLP. The pnu1 gene codes for an RNase that is induced by nitrogen starvation (Nakashima et al., 2002b). Thus, the End1/Pnu1 protein, like related mitochondrial proteins in other organisms, is an example of a sugar-non-specific nuclease. The analysis of strains carrying a pnu1 deletion revealed no defects in meiotic recombination and spore viability.
Resumo:
Horses, asses and zebras belong to the genus Equus and are the only extant species of the family Equidae in the order Perissodactyla. In a previous work we demonstrated that a key factor in the rapid karyotypic evolution of this genus was evolutionary centromere repositioning, that is, the shift of the centromeric function to a new position without alteration of the order of markers along the chromosome. In search of previously undiscovered evolutionarily new centromeres, we traced the phylogeny of horse chromosome 5, analyzing the order of BAC markers, derived from a horse genomic library, in 7 Equus species (E. caballus, E. hemionus onager, E. kiang, E. asinus, E. grevyi, E. burchelli and E. zebra hartmannae). This analysis showed that repositioned centromeres are present in E. asinus (domestic donkey, EAS) chromosome 16 and in E. burchelli (Burchell's zebra, EBU) chromosome 17, confirming that centromere repositioning is a strikingly frequent phenomenon in this genus. The observation that the neocentromeres in EAS16 and EBU17 are in the same chromosomal position suggests that they may derive from the same event and therefore, E. asinus and E. burchelli may be more closely related than previously proposed; alternatively, 2 centromere repositioning events, involving the same chromosomal region, may have occurred independently in different lineages, pointing to the possible existence of hot spots for neocentromere formation. Our comparative analysis also showed that, while E. caballus chromosome 5 seems to represent the ancestral configuration, centric fission followed by independent fusion events gave rise to 3 different submetacentric chromosomes in other Equus lineages.
Resumo:
[1] Two millimeter-sized hydrothermal monazites from an open fissure (cleft) that developed late during a dextral transpressional deformation event in the Aar Massif, Switzerland, have been investigated using electron microprobe and ion probe. The monazites are characterized by high Th/U ratios typical of other hydrothermal monazites. Deformation events in the area have been subdivided into three phases: (D1) main thrusting including formation of a new schistosity, (D2) dextral transpression, and (D3) local crenulation including development of a new schistosity. The two younger deformational structures are related to a subvertically oriented intermediate stress axis, which is characteristic for strike slip deformation. The inferred stress environment is consistent with observed kinematics and the opening of such clefts. Therefore, the investigated monazite-bearing cleft formed at the end of D2 and/or D3, and during dextral movements along NNW dipping planes. Interaction of cleft-filling hydrothermal fluid with wall rock results in rare earth element (REE) mineral formation and alteration of the wall rock. The main newly formed REE minerals are Y-Si, Y-Nb-Ti minerals, and monazite. Despite these mineralogical changes, the bulk chemistry of the system remains constant and thus these mineralogical changes require redistribution of elements via a fluid over short distances (centimeter). Low-grade alteration enables local redistribution of REE, related to the stability of the accessory phases. This allows high precision isotope dating of cleft monazite. 232Th/208Pb ages are not affected by excess Pb and yield growth domain ages between 8.03 ± 0.22 and 6.25 ± 0.60 Ma. Monazite crystallization in brittle structures is coeval or younger than 8 Ma zircon fission track data and hence occurred below 280°C.
Resumo:
In many regions, tectonic uplift is the main driver of erosion over million-year (Myr) timescales, but climate changes can markedly affect the link between tectonics and erosion, causing transient variations in erosion rates. Here we study the driving forces of millennial to Myr-scale erosion rates in the French Western Alps, as estimated from in situ produced cosmogenic 10Be and a newly developed approach integrating detrital and bedrock apatite fission-track thermochronology. Millennial erosion rates from 10Be analyses vary between ~0.27 and ~1.33 m/kyr, similar to rates measured in adjacent areas of the Alps. Significant positive correlations of millennial erosion rates with geomorphic measures, in particular with the LGM ice thickness, reveal a strong transient morphological and erosional perturbation caused by repeated Quaternary glaciations. The perturbation appears independent of Myr-scale uplift and erosion gradients, with the effect that millennial erosion rates exceed Myr-scale erosion rates only in the internal Alps where the latter are low (<0.4 km/Myr). These areas, moreover, exhibit channels that clearly plot above a general linear positive relation between Myr-scale erosion rates and normalized steepness index. Glacial erosion acts irrespective of rock uplift and thus not only leads to an overall increase in erosion rates but also regulates landscape morphology and erosion rates in regions with considerable spatial gradients in Myr-scale tectonic uplift. Our study demonstrates that climate change, e.g., through occurrence of major glaciations, can markedly perturb landscape morphology and related millennial erosion rate patterns, even in regions where Myr-scale erosion rates are dominantly controlled by tectonics.
Resumo:
Detrital studies that utilize zircon U–Pb geochronology and fission-track (FT) thermochronometry are subject to a range of potential sources of bias that should be properly evaluated and minimized. Some of them are common to any single-grain mineral analysis (e.g., variable bedrock mineral fertility, hydraulic sorting during transport, selective grain loss during sample processing), whereas others are intrinsic to zircon, and are related to radiation damage and age discordance. In this article, we quantify the impact of intrinsic bias on detrital studies thanks to the analysis of modern detritus shed from the European Alps, and illustrate the general implications on geological interpretations. We show that detrital zircon U–Pb age distributions based on statistically robust datasets are highly reproducible and representative of the parent bedrock ages in the catchment. Arbitrary or selective removal of discordant grain ages can be minimized by using the Kolmogorov–Smirnov test to identify an appropriate cutoff level. Loss of metamict (α-damaged) zircon has a minor impact on data representativeness, and is mainly controlled by regional metamorphism rather than by mechanical abrasion during river transport. Zircon FT grain-age distributions were found to have poor reproducibility, although age spectra are consistent with bedrock data. However, unlike the U–Pb datasets, U-rich zircon grains (> 1000 ppm) are systematically missed, and undatable grains may exceed 50%. We identify two major sources of distribution bias specific to zircon FT datasets: (i) sediment sources dominated by U-rich zircon grains are markedly underrepresented in the detrital record, because such grains often have uncountable high densities of fission tracks (“U concentration bias”); (ii) sediment sources that shed zircon grains with high levels of α-damage are underrepresented, because these grains are lost during chemical etching for FT revelation (“etching bias”). In the case of multimethod dating on the same grains (e.g., FT and U–Pb double dating), bias affecting detrital zircon FT dating propagates to the entire dataset. These effects may not impact on exhumation-rate studies that utilize the youngest grain ages (i.e., lag-time approach). However, they represent a limiting factor for conventional provenance studies, and generally preclude application of zircon FT dating to sediment budget calculations.
Resumo:
A partial skb1 gene was originally isolated in a yeast two-hybrid screen for Shk1-interacting polypeptides. Shk1 is one of two Schizosaccharomyces pombe p21Cdc42/Rac-activated kinases (PAKs) and is an essential component of the Ras1-dependent signal transduction pathways regulating cell morphology and mating responses in fission yeast. After cloning the skb1 gene we found the Skb1 gene product to be a novel, nonessential protein lacking homology to previously characterized proteins. However the identification of Skb1 homologs in C. elegans, S. cerevisiae, and H. sapiens reveals evolution has conserved the skb1 gene. Fission yeast cells carrying a deletion of skb1 exhibit a defect in cell size but not mating abilities. This defect is suppressed by high copy shk1. Fission yeast overexpressing skb1 were found to undergo cell division at a length 1.5X greater than normal. In the two-hybrid system, Skb1 interacts with a subdomain of the Shk1 regulatory region distinct from that with which Cdc42 interacts, and forms a ternary complex with Shk1 and Cdc42. By use of yeast genetics, we have established a role for Skb1 as a positive regulator of Shk1. Co-overexpression of shk1 with skb1 was found to suppress the morphology defect, but not the sterility, of ras1Δ fission yeast. Thus, the function of Skb1 is restricted to a morphology control pathway. We determined that Skb1 functions as a negative regulator of mitosis and does this through a Shk1-dependent mechanism. The mitotic regulatory function of Skb1 and Shk1 was also partially dependent upon Wee1, a direct negative regulator of the cyclin-dependent kinase Cdc2. The role for Skb1 and Shk1 as mitotic regulators is the first connection from a PAK protein to control of the cell cycle. Furthermore, Skb1 is the first non-Cdc42/Rac PAK modulator to be identified. ^
Resumo:
There are different views about the amount and timing of surface uplift in the Transantarctic Mountains and the geophysical mechanisms involved. Our new interpretation of the landscape evolution and tectonic history of the Dry Valleys area of the Transantarctic Mountains is based on geomorphic mapping of an area of 10,000 km(2). The landforms are dated mainly by their association with volcanic ashes and glaciomarine deposits and this permits a reconstruction of the stages and timing of landscape evolution. Following a lowering of base level about 55 m.y. ago, there was a phase of rapid denudation associated with planation and escarpment retreat, probably under semiarid conditions. Eventually, downcutting by rivers, aided in places by glaciers, graded valleys to near present sea level. The main valleys were flooded by the sea in the Miocene during a phase of subsidence before experiencing a final stage of modest upwarping near the coast. There has been remarkably little landform change under the stable, cold, polar conditions of the last 15 m.y. It is difficult to explain the Sirius Group deposits, which occur at high elevations in the area, if they are Pliocene in age. Overall, denudation may have removed a wedge of rock with a thickness of over 4 km at the coast declining to 1 km at a point 75 km inland, which is in good agreement with the results of existing apatite fission track analyses. It is suggested that denudation reflects the differences in base level caused by high elevation at the time of extension due to underplating and the subsequent role of thermal uplift and flexural isostasy. Most crustal uplift (2-4 km) is inferred to have occurred in the early Cenozoic with 400 m of subsidence in the Miocene followed by 300 m of uplift in the Pliocene.
Resumo:
TheXENON100 experiment, installed underground at the LaboratoriNazionali del Gran Sasso, aims to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering off xenon nuclei. This paper presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from (alpha, n) reactions and spontaneous fission due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on MonteCarlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by theXENON100 experiment in 2011 and 2012, 0.11(-0.04)(+0.08) events and 0.17(-0.07)(+0.12) events, respectively, and conclude that they do not limit the sensitivity of the experiment.
Resumo:
Eukaryotic cells are compartmentalized into membrane-bound organelles in order to provide sheltered reaction rooms for various specific processes. Organelles are not randomly distributed in a cell or operate isolated from each other. At the contrary — some organelles are closely linked and their functions are tightly orchestrated. The most well-known example of two such organelles acting in concert are the ER and the mitochondrion that work together in order to coordinate cellular lipid biosynthesis, maintain Ca2+-homeostasis, regulate mitochondrial division and control mitochondrial/ER shape as well as to synchronize the movement of these organelles within a cell. To study the mitochondrion and its interface to the ER requires a simplified mitochondrial system. African trypanosomes represent such a system. The unicellular parasite that causes devastating diseases in humans and animals has only one large mitochondrion that does not undergo fission/fusion events except for the context of cell division. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the protozoan. Central to the understanding of how mitochondria control their morphology, communicate with their surroundings and manage exchange of metabolites and transport of biopolymers (proteins, RNAs) is the mitochondrial outer membrane (MOM), as the MOM defines the boundary of the organelle. Recently, we have purified the MOM of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal MOM proteome consists of 82 proteins, two thirds of which have never been associated with mitochondria before. Among these, we identified novel factors required to regulate mitochondrial morphology and the long-elusive protein import machinery of T. brucei. A comparison with the MOM proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. One of these is the Miro-GTPase Gem1. In yeast, this Ca2+-EF-Hand containing polypeptide is thought to be involved in a protein complex that physically tethers the mitochondrion to the ER. Interestingly, a putative tethering complex in mammalian cells was linked to the mitochondrial fusion/fission machinery. Thus, the concept of a protein complex-mediated connection seems to be a general and conserved feature. We are currently investigating, if such a protein complex exists in T. brucei and if the trypanosomal Gem1 protein is involved. This ER-subdomain associated with mitochondria has been termed mitochondria-associated ER-membranes or MAM. The MAM has recently been implicated to play a key role in Alzheimer’s disease. It is therefore of broad and general interest to establish other eukaryotic model systems in order to investigate the MAM-MOM connection in more detail.
Resumo:
Central to the understanding of how mitochondria control their morphology, communicate with their surroundings and manage exchange of metabolites and transport of biopolymers (proteins, RNAs) is the mitochondrial outer membrane (MOM), as the MOM defines the boundary of the organelle. Recently, we have purified the MOM of the mitochondrial model organism T. brucei and characterized its proteome. Our results show that the trypanosomal MOM proteome consists of 82 proteins. Among these, we identified novel factors required to regulate mitochondrial morphology and the long-elusive protein import machinery of T. brucei. A comparison with the MOM proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. One of these is the Miro-GTPase Gem1. In yeast, this Ca2+-EF-Hand containing polypeptide is thought to be involved in a protein complex that physically tethers the mitochondrion to the ER. In mammalian cells, a putative tethering complex was linked to the mitochondrial fusion/fission machinery. Thus, the concept of a protein complex-mediated connection seems to be a general and conserved feature. We are currently investigating if such a protein complex exists in T. brucei and if the trypanosomal Gem1 protein is involved.
Resumo:
We synthesized published data on the erosion of the Alpine foreland basin and apatite fission-track ages from the Alps to infer the erosional sediment budget history for the past 5 m.y. The data reveal that erosion of the Alpine foreland basin is highest in front of the western Alps (between 2 and 0.6 km) and decreases eastward over a distance of 700 km to the Austrian foreland basin (similar to 200 m). For the western Alps, erosion rates are >0.6 km/m.y., while erosion rates for the eastern foreland basin and the adjacent eastern Alps are <0.1 km/m.y., except for a small-scale signal in the Tauern Window. The results yield a large ellipsoidal, orogen-crossing pattern of erosion, centered along the western Alps. We suggest that accelerated erosion of the western Alps and their foreland basin occurred in response to regional-scale surface uplift, related to lithospheric unloading of the Eurasian slab along the Eurasian-Adriatic plate boundary. While we cannot rule out recent views that global climate change led to substantial erosion of the European Alps since 5 Ma, we postulate that regional-scale tectonic processes have driven erosion during this time, modulated by an increased erosional flux in response to Quaternary glaciations.
Resumo:
Monazite-bearing Alpine clefts located in the Sonnblick region of the eastern Tauern Window, Austria, are oriented perpendicular to the foliation and lineation. Ion probe (SIMS) Th–Pb and U–Pb dating of four cleft monazites yields crystallization ages of different growth domains and aggregate regions ranging from 18.99 ± 0.51 to 15.00 ± 0.51 Ma. The crystallization ages obtained are overlapping or slightly younger than zircon fission track ages but older than zircon (U–Th)/He cooling ages from the same area. This constrains cleft monazite crystallization in this area to *300–200 �C. LA-ICP-MS data of dated hydrothermal monazites indicate that in graphite-bearing, reduced host lithologies, cleft monazite is poor in As and has higher La/Yb values and U concentrations, whereas in oxidised host rocks opposite trends are observed. Monazites show negative Eu anomalies and variable La/Yb values ranging from 520 to 6050. The positive correlation between Ca and Sr concentration indicates dissolution of plagioclase or carbonates as the source of these elements. The data show that early exhumation and cleft formation in the Tauern is related to metamorphic dome formation caused by the collision of the Adriatic with the European plate and that monazite crystallization in the clefts occurred later. Our data also demonstrate that hydrothermal monazite ages offer great potential in helping to constrain the chronology of exhumation in collisional orogens.
Resumo:
As a nontolerant plant to a large number of toxic compounds, Arabidopsis thaliana is a suitable model to study regulation of genes involved in response to heavy metals. Using a cDNA-microarray approach, we identified some ABC transporters that are differentially regulated after cadmium treatments, making them putative candidates for being involved in Cd sequestration and redistribution in plants. Regarding yeast and fission yeast, in which Cd is able to form complexes either with glutathione (GSH) or phytochelatins (PC) subsequently transported into vacuoles via ABC transporters, it is also very likely that some plant ABC transporters are able to transport GS2–Cd or PC–Cd complexes into subcellular compartments or outside of the cell. The characterization of such transporters is of great interest for developing molecular biology approaches in phytoremediation.
Resumo:
The long-lived radionuclide 129I (T 1/2 = 15.7 My) occurs in the nature in very low concentrations. Since the middle of our century the environmental levels of 129I have been dramatically changed as a consequence of civil and military use of nuclear fission. Its investigation in environmental materials is of interest for environmental surveillance, retrospective dosimetry and for the use as a natural and man-made fracers of environmental processes. We are comparing two analytical methods which presently are capable of determining 129I in environmental materials, namely radiochemical neutron activation analysis (RNAA) and accelerator mass spectrometry (AMS). Emphasis is laid upon the quality control and detection capabilities for the analysis of 129I in environmental materials. Some applications are discussed.